next up previous
Next: Multi-Dimensional Approach (Multi-D) Up: Probability Distribution Functions (PDFs) Previous: Standard Technique (1D)

Projection and Correlation Approximation (PCA)

In the PCA method, a transformation $x \to y$ is used [1]. The monotonic function, $y_i=y(x_i)$ transforms a variable $x_i$ that has a distribution function $p(x_i)$ to the variable $y_i$ that follows a normal Gaussian distribution function (of mean 0 and variance 1). Thus

\begin{displaymath}
y(x_i)
=\sqrt{2} {\rm erf}^{-1}\left[2F(x_i)-1 \right]  .
\end{displaymath}

Here $F(x_i)$ is the cumulative function of $x_i$ and erf$^{-1}$ is the inverse error function. The PCA joint PDF is
\begin{displaymath}
P(\vec{x})={e^{-{1\over2}  \vec{y}^T(U^{-1}-I)\vec{y}} \over
\vert U \vert^{1/2}}
\prod_{i=1}^N p(x_i)  ,
\end{displaymath} (2)

where $U$ is the covariance matrix for $\vec{y}$ and $I$ is the identity matrix.



Alain Bellerive 2006-05-19