function qrat(xpos) * function qrat(xpos,gam) * qratio = (1.+a2*x**2+a4*x**4)/(1.+b2*x**2+b4*x**4) * The 6 parameters that could be varied for best fit are: * 1) ampeak = prf peak amplitude * 2) x0 = peak centroid position * 3) gam = FWHM of the prf * 4) del = base width * 5) a and 6) b scale parameters relating the coefficients of the 4th * order polynomials to the FWHM and base width del * qratio = (1.+a2*x**2+a4*x**4)/(1.+b2*x**2) common /pawpar/ par(6) iz = par(6) x0=0 * ampeak=1.0 ampeak=par(1) gam = sqrt( 5.82 + 0.0824*(iz-0.5)) gam=par(2) del=7.73 * del = 8.4017 + 0.76942E-02*(iz-0.5) del=par(3) * a= 0.3 a = 1.1-0.0415*(iz-0.5) a=par(4) b=0. * b=par(5) * Define x = xpos-x0 if( abs(x).lt.del*0.5 )then * The value of the prf function at position 'x' is then given by: qrat = ampeak*qratio(a,b,gam,del,x) else qrat = 0. endif end function qratio(a,b,gam,del,c) * Normalized pad response function * Ratio of two symmetric 4th order polynomials * The function can approximate a variety of line shapes * from a Gaussian to a Lorentzian y=gam/2. x=del/2. a4=a/x**4 p=-(1.+a) a2=p/x**2 b4=b/y**4 q=1.+2.*a2*y**2+(2.*a4-b4)*y**4 b2=q/y**2 qn=1.+a2*c**2+a4*c**4 qd=1.+b2*c**2+b4*c**4 qratio=qn/qd return end