
e+e− techniques: Kinematic endpoints

Imagine we produce ˜̀
R
˜̀
R pairs in e+e− collisions, and they each decay to `Ñ1.

How can we measure their masses?
One technique: “kinematic endpoints”
Measure maximum and minimum values of ` energies → extract m˜̀R

and m
Ñ1

.

Here’s how it works:
(1) Consider the rest frame of one ˜̀. Energy and momentum conservation:

E` + E
Ñ

= m˜̀, ~p` = −~p
Ñ

(1)

Neglect the mass of `. Then E` = |~p`|.
Also have E

Ñ
=

√
m2

Ñ
+ ~p2

Ñ
=

√
m2

Ñ
+ E2

` .

Plug in to energy conservation equation, rearrange, and square both sides:

m2

Ñ
+ E2

` = m2˜̀− 2m˜̀E` + E2
` (2)

or E` = |~p`| =
m2˜̀−m2

Ñ

2m˜̀ (3)

(2) Now we’ll boost the ˜̀ to the collider centre-of-mass frame.

E˜̀R1
+ E˜̀R2

=
√

s, ~p˜̀R1
= −~p˜̀R2

(4)

Use the fact that two particles of the same mass m˜̀ are produced:

E˜̀R1
=

√
m2˜̀+ ~p2˜̀R1

= E˜̀R2
=

√
s

2
= γm˜̀, |~p˜̀R1

| =
√

s

4
−m2˜̀ = γm˜̀|~v|

(5)
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Compute ECM
` in the CM frame by doing the boost:

(cos θ∗ is defined in ˜̀ rest frame)

ECM
` = γ (E` + βp`z) = γ (E` + |~p`| cos θ∗) = E` (γ + γ|~v| cos θ∗) (6)

From before we have

E˜̀= γm˜̀=

√
s

2
→ γ =

√
s

2m˜̀ (7)

|~p˜̀| = γ|~v|m˜̀=
√

E2˜̀−m2˜̀ → γ|~v| =

√
s− 4m2˜̀
2m˜̀ (8)

Put it all together:

ECM
` =

m2˜̀−m2

Ñ

4m2˜̀
(√

s +
√

s + 4m2˜̀cos θ∗
)

(9)

Maximum (minimum) lepton energy corresponds to cos θ∗ = 1 (−1)√
s is known: collider CM energy.

Measure Emax
` and Emin

` from lepton kinematic distributions.
Solve for m˜̀ and m

Ñ
! A little algebra gives:

m2˜̀ =
s

4

[
1−

(
Emax − Emin

Emax + Emin

)2
]

m2

Ñ
= m2˜̀

[
1−

2(Emax + Emin)
√

s

]
(10)

Need to isolate data sample with only ˜̀
R
˜̀
R pair production:

can use e+e− beam polarization to suppress ˜̀
L
˜̀
L and W+W− background
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In practise, things are a little more complicated.

Example: e+e− → µ̃+
L,Rµ̃−L,R with m

µ̃R
= 178 GeV, m

µ̃L
= 287 GeV

Note the muon energy edges at about 65 and 220 GeV.

from W+W− decaying into the µν final state is included. Only with polarized e− and e+

beams can both muon-energy edges, at around 65 and 220 GeV, be reconstructed. The
slepton masses can be determined in the continuum up to a few GeV uncertainty. This
shows the real importance of positron polarization for a clear observation of the low-
energy edge associated to the µ̃R, which cannot be clearly seen unless the positron is
polarized [87].

Energy spectrum of µ+µ− [GeV]

µ+µ− events (incl. W+W−)

(Pe− , Pe+) = (−80%,+80%)

√
s = 750 GeV

Energy spectrum of µ+µ− [GeV]

µ+µ− events (incl. W+W−)
√

s = 750 GeV

(Pe− , Pe+) = (+80%,−80%)

Figure 3.4: Energy spectrum of muons from µ̃L,R decays into µχ̃0
1 final states, including

the W+W− background decaying into µν final states in the scenario S3, cf. table 3.1, for
two combinations of beam polarizations for

√
s = 750 GeV and Lint = 500 fb−1 [87].

Quantitative examples: The most important background to µ̃ pair production is
WW pair production. Compared with the case of only the electron beam polarized,
the signal gains about a factor 1.8 and the background is suppressed by about a factor
of 4 with (Pe− , Pe+) = (+80%, −80%) compared to (+80%, 0). With both beams
polarized, a rather accurate measurement of the smuon masses is possible already in
the continuum, which can then be used to devise possible threshold scans.

3.1.4 Determination of third-generation sfermion parameters

The advantages of having both beams polarized in third-generation sfermion produc-
tion are the larger cross sections and a more precise determination of masses and mix-
ing angles.

In the third generation of sfermions, Yukawa terms give rise to a mixing between the
‘left’ and ‘right’ states f̃L and f̃R (f̃ = t̃, b̃, τ̃ ). The mass eigenstates are f̃1 = f̃L cos θf̃ +

f̃R sin θf̃ , and f̃2 = f̃R cos θf̃ − f̃L sin θf̃ , with θf̃ the sfermion mixing angle.
In the following phenomenological studies of third-generation sfermions in e+e− an-

nihilation at
√

s = 500 GeV are summarized. Information on the mixing angle can be
obtained by measuring production cross sections with different combinations of beam
polarizations. It has been shown in [88, 90, 91] that beam polarization is important to re-
solve ambiguities, see fig. 3.5. For the unpolarized case, two values of cos 2θτ̃ (θτ̃ being the
mixing angle) are consistent with the cross sections (red lines). However, the use of po-
larized beams allows a single solution (green and blue lines) to be identified. Moreover,

49

from hep-ph/0507011
These plots also demonstrate effect of beam polarization:
RH e− and LH e+ eliminate t-channel W+W− production (a large background).
Beam pol also changes the strength of the Z∗ contribution:

different effect on µ̃L and µ̃R pair production
Eyeballing the endpoints:

µ̃L: Emax ≈ 220 GeV, Emin ≈ 65 GeV (note drop: pol dep → µ̃L)
µ̃R: Emax ≈ 65 GeV, Emin not visible!

Solve: get m
µ̃L

and m
Ñ

from µ̃L endpoints; plug in m
Ñ

to get m
µ̃R

from Emax

m
µ̃L
≈ 282 GeV (compare input 287 GeV)

m
Ñ1
≈ 153 GeV

m
µ̃R
≈ 167 GeV (compare input 178 GeV)
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Why are the lepton energy distributions flat?
Take another look at the formula:

ECM
` =

m2˜̀−m2

Ñ

4m2˜̀
(√

s +
√

s + 4m2˜̀cos θ∗
)

(11)

We’re asking about the differential cross section,

dσ

dECM
`

=
dσ

d cos θ∗
d cos θ∗

dECM
`

(12)

• d cos θ∗/dECM
` is a constant.

• dσ/d cos θ∗ is the ˜̀ decay distribution in the ˜̀ rest frame.˜̀ is a scalar: it can’t single out any direction.
→ uniform decay distribution over the solid angle:

dσ

d cos θ∗dφ∗
= const (13)

Integrating over the φ∗ angle gives us what we want to know:
dσ/dECM

` is flat (with endpoints).
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e+e− techniques: Beam polarization

As a test of supersymmetry, we want to check whether the selectrons carry
the same chiral quantum numbers as the electrons, and whether the electron-
selectron-gaugino Yukawa couplings are related to the electron gauge cou-
plings as predicted by SUSY.

Study the production processes e+e− → ẽ+
L,Rẽ−L,R.

chiral quantum numbers as their SM partners one has to separate the scattering process
from the annihilation process. With both beams polarized the production vertices in
the t- and u-channel can be analysed independently. Another important test of the
theory is to show that the SUSY Yukawa couplings are equal to the gauge couplings.
Polarized positrons are needed for such model tests, in particular in scenarios where
even a fully polarized electron beam is insufficient.

In this section selectron production, e+e− → ẽ+
L,Rẽ−L,R, with polarized beams is stud-

ied. The process occurs via γ, Z exchange in the s-channel and via neutralino exchanges,
χ̃0

1,2,3,4, in the t-channel, see fig. 3.1. In the t-channel both pair production, ẽ+
L ẽ−L , ẽ+

Rẽ−R,
as well as associated production, ẽ+

L ẽ−R, ẽ+
Rẽ−L , is possible, whereas in the s-channel only

pairs, ẽ+
L ẽ−L , ẽ+

Rẽ−R, can be produced. In the MSSM at tree-level this sector depends on the
scalar masses and, due to the exchange of all neutralinos in the t-channel, on the gaug-
ino/higgsino mixing parameters M1,2, ϕM1 , µ, ϕµ and tan β.

In the following the impact of beam polarization for determining a) the quantum num-
bers L, R and b) the Yukawa couplings is studied.

e+

e−

ẽ+
L,R

ẽ−L,R

e+

e−

ẽ+
L,R

ẽ−R,L

Figure 3.1: Selectron production: γ, Z-exchange in the s-channel and χ̃0
1,. . . , χ̃0

4-exchange
in the t-channel.

Chiral quantum numbers

Supersymmetry associates scalars to chiral (anti)fermions

e−L,R ↔ ẽ−L,R and e+
L,R ↔ ẽ+

R,L. (3.1)

In order to prove this association it is necessary to have both beams polarized [82]. The
association can be directly tested only in the t-channel, as can be inferred from fig. 3.1.
Polarized beams serve to separate this channel from the s-channel and enhance the cross
section of just those SUSY partners of the initial chiral e−L,R and e+

L,R given by the beam
polarization, see eq. (3.1). This is demonstrated by isolation of ẽ+

L ẽ−R by the RR configu-
ration of the initial beams in an example where the selectron masses are close together,
namely mẽL = 200 GeV, mẽR = 195 GeV so that both ẽL, ẽR decay via the same channels,
ẽL,R → χ̃0

1e. The decay products can be separated e.g. via their different energy spec-
tra and charge separation. At the LC it is then possible to measure the selectron masses
with an expected accuracy of typically a few hundred MeV [1]. In addition, all SM back-
ground events, e.g., those from W+W− production, are strongly suppressed with the RR
configuration. The other SUSY parameters correspond to the scenario S1 in table 3.1.

45

• s-channel: Can produce ẽ+
L ẽ−L and ẽ+

R ẽ−R through γ, Z couplings.

• t-channel: Can produce all 4 combinations: ẽ+
L ẽ−L , ẽ+

R ẽ−R, ẽ+
L ẽ−R, and ẽ+

R ẽ−L .

Signal rates depend on:
• ẽL and ẽR masses
• Selectron gauge couplings and eẽÑ Yukawa couplings
• masses and compositions of all 4 neutralinos exchanged in the t-channel
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(1) Check whether eL couples to ẽL and a neutralino, and eR couples to ẽR

and a neutralino. Only the t-channel process is useful here.
Collide ēReL → ẽ+

R ẽ−L , ēLeR → ẽ+
L ẽ−R. (Note ēR is a left-handed positron.)

The importance of having both beams polarized is demonstrated in fig. 3.2, which
exhibits the isolation of the ẽ+

L ẽ−R pair. Even extremely high right-handed electron polar-
ization, Pe− ≥ +90%, is not sufficient by itself to disentangle the pairs ẽ+

L ẽ−R and ẽ+
R ẽ−R and

to test their association to the chiral quantum numbers, since both cross sections are nu-
merically very close, as seen in fig. 3.2 (left panel). Only with right-handed polarizations
of both beams, the pair ẽ+

L ẽ−R can be separated, as seen in fig. 3.2 (right panel).
Note that the t- (s-wave) and s-channel (p-wave) production could also be separated

via threshold scans [83], where sufficient running time at different energies close to the
threshold is required. It is, however, also necessary to have both beams polarized in that
case to test whether indeed the couplings of the produced selectrons uniquely correspond
to the chirality of the electrons/positrons, respectively, as in eq. (3.1).
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Figure 3.2: Separation of the selectron pair ẽ+
L ẽ−R in e+e− → ẽ+

L,Rẽ−L,R → e+e−2χ̃0
1 is not

possible with electron polarization only (left panel). If, however, both beams are polar-
ized, the cross sections (right panel) differ and the RR configuration separates the pair
ẽ+
L ẽ−R [84]. The SUSY parameters are chosen as in scenario S1, table 3.1.

Yukawa couplings

As a consequence of supersymmetry, the SU(2) and U(1) SUSY Yukawa couplings have
to be identical to the corresponding SM gauge couplings. Assuming that the masses and
mixing parameters of the neutralinos are known, the production cross sections of ẽ+

R ẽ−R
and ẽ+

L ẽ−R can be exploited to derive the Yukawa couplings. In [85] a one-σ uncertainty
of 0.2% (1.2%) in the determination of the U(1) (SU(2)) Yukawa couplings has been de-
rived for the SUSY reference scenario SPS1a [81]. The study was done at

√
s = 500 GeV,

Lint = 500 fb−1, including specific cuts to reduce the SM background and taking also into
account effects from beamstrahlung and initial-state radiation (ISR). With (|Pe−|, |Pe+|) =
(80%, 50%) the result is improved by a factor of 1.4 compared with the case of (80%, 0).

In this analysis performed in the SPS1a scenario, the chirality of the produced selec-
trons can be distinguished by their decay modes, since L-selectrons can decay into the
second-lightest neutralino χ̃0

2, while for the R-selectrons only the decay channel ẽ±R →
e±χ̃0

1 is open. For a slightly heavier gaugino mass M1/2 and smaller scalar mass m0, how-
ever, both selectron states have identical decay modes, ẽ±R,L → e±χ̃0

1. In this case the

46

Plots assume m
ẽL
≈ m

ẽR
, decay mode ẽL,R → eÑ1 from hep-ph/0507011

Potentially achievable polarization at ILC: e− up to 90%, e+ up to 60% (if it
will be included in the design).
Linear dependence of cross sections with polarization is just due to dialling
the luminosity of the relevant polarization component of the beam
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(2) Check whether eẽÑ Yukawa couplings are the same as the eeγ, eeZ gauge
couplings.
Want to separately measure:

• eLẽLÑi coupling
• eRẽRÑi coupling

For this we must assume that the neutralino masses and mixing parameters
have already been measured!
Technique: measure ẽẽ production cross sections from polarized initial beams.

• If only one beam is polarized:
• Measure ēeR → ẽRẽR, ẽ+

L ẽ−R, ẽLẽL via s-channel γ, Z and t-channel Ñi

• Measure ēeL → ẽRẽR, ẽ+
R ẽ−L , ẽLẽL via s-channel γ, Z and t-channel Ñi

Can separate ẽL from ẽR if their decay modes can be distinguished,
e.g., if ẽL → eÑ2 is open, while ẽR → eÑ1 only.
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• If both beams are polarized:
• Measure ēReR → ẽRẽR, ẽLẽL via s-channel γ, Z and t-channel Ñi

• Measure ēLeL → ẽRẽR, ẽLẽL via s-channel γ, Z and t-channel Ñi

• Measure ēReL → ẽ+
R ẽ−L via t-channel Ñi

Can extract separate couplings even if final-state ẽR and ẽL cannot be distin-
guished easily (e.g., close in mass, same decay modes)
Need both beams polarized in this case to get a unique solution:

-0.05 0 0.05 0.1 0.15 0.2
U(1)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

S
U
(
2
)

R

R

L L

RR

RR

LR

Figure 3.3: 1σ bounds on the determination of the supersymmetric U(1) and SU(2)
Yukawa couplings between e+, ẽ+

R,L and χ̃0
i from selectron cross-section measurements.

The blue (shaded) bands indicate results from measurements using only electron beam
polarization for two values Pe− = +90% (R) and Pe− = −90% (L). The light green
bands add information from measurements with both beams polarized for the values
(Pe+, Pe−) = (−60%, +90%) (LR) and (+60%, +90%) (RR). Combining all constraints leads
to the dark red region. The errors correspond to an integrated luminosity of 100 fb−1 for
each polarization combination [86]. The SUSY parameters are chosen as in scenario S2,
table 3.1.

different combinations of ẽR and ẽL can only be distinguished by the initial beam polar-
ization. If one provides the relative contributions of the different produced selectron pairs
from theory, the use of electron polarization alone would be sufficient to measure both the
SU(2) and U(1) SUSY Yukawa couplings.

Without using this theoretical information, it is necessary to have both beams polar-
ized for a measurement of the Yukawa couplings. This is illustrated in fig. 3.3 for scenario
S2, cf. table 3.1. The use of only e− beam polarization leaves a four-fold ambiguity in the
determination of the Yukawa couplings, which can be resolved by including cross-section
measurements with simultaneous polarization of the e+ and e− beams. Combining this
information, the U(1) and SU(2) Yukawa couplings can be determined with a precision
of 0.2% and 1.2%, respectively, see fig. 3.3. The results shown take into account the selec-
tron decay distributions, including SM and SUSY backgrounds that have been reduced
by appropriate cuts, beamstrahlung, ISR and the most important systematic uncertainties
(see [85] for details).

Quantitative example: The above analysis shows that even an extremely high de-
gree of electron polarization, say Pe− ≥ 90%, would be insufficient to test the chiral
quantum numbers associated to the scalar ẽ±. Also, a measurement of the Yukawa
couplings, which is important to prove their equality to the gauge couplings in SUSY,
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from hep-ph/0507011
Plot of deviations of Yukawas from SM gauge couplings
(for 90% e− pol, 60% e+ pol)
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Kinematic endpoints at LHC
At the LHC: proton-proton collider

•
√

s not known; varies event-by-event
• v of pair-produced particles not known → can’t use boost to get E
• Boost of CM along beam direction not known

e+e− technique for ˜̀̀̃ → `Ñ1`Ñ1 reconstruction won’t work!
But: LHC can generally produce heavier particles → longer decay chains.

More kinematic variables to play with.
Don’t know the boost of individual events:
→ use kinematic invariants, like invariant masses.

Consider the decay chain Ñ2 → ˜̀±
R`∓ → Ñ1`+`−

First need to select events that contain a Ñ2 and identify the `+`−

coming from the Ñ2 decay.
Invariant observable: invariant mass of `+`−: M``

How is this related to the SUSY masses?
Momentum and energy conservation in each decay:

p
Ñ2

= p`1
+ p˜̀ p˜̀= p`2

+ p
Ñ1

(14)

Combine and rearrange:

M2
`` = (p`1

+ p`2
)2 = (p

Ñ2
− p

Ñ1
)2 = m2

Ñ2

+ m2

Ñ1

− 2p
Ñ2
· p

Ñ1
(15)

What is this? Let’s work in the Ñ2 rest frame (can do that because we’re
calculating kinematic invariants!)

p
Ñ2
· p

Ñ1
= m

Ñ2
E

Ñ1
where E

Ñ1
is in the Ñ2 rest frame

M2
`` = m2

Ñ2

+ m2

Ñ1

− 2m
Ñ2

E
Ñ1

(16)
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Now we need to find the kinematic endpoint(s) of E
Ñ1

in the Ñ2 rest frame

in terms of the SUSY masses.
Strategy: Relate the energies to masses and the ˜̀ decay angle θ

Look at Ñ2 decay: m
Ñ2

= E`1
+ E˜̀, ~p`1

= −~p˜̀
E`1

=
1

2m
Ñ2

(
m2

Ñ2

−m2˜̀)
|~p`1

| = E`1
(17)

E˜̀=
1

2m
Ñ2

(
m2

Ñ2

+ m2˜̀)
|~p˜̀| = |~p`1

| = E`1
(18)
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Now let’s do the ˜̀ decay in the ˜̀ rest frame (denoted by a star – will need to
boost back to the Ñ2 rest frame at the end!)
Energy & momentum conservation: m˜̀= E∗

`2
+ E∗

Ñ1

, ~p∗`1
= −~p∗

Ñ1

E∗
`2

=
1

2m˜̀
(
m2˜̀−m2

Ñ1

)
|~p∗`2

| = E∗
`2

(19)

E∗
Ñ1

=
1

2m˜̀
(
m2˜̀+ m2

Ñ1

)
|~p∗

Ñ1

| = |~p∗`2
| = E∗

`2
(20)

We have E∗
Ñ1

in the ˜̀ rest frame; need to boost it to the Ñ2 rest frame.

Work out the kinematic boost from the ˜̀ energy and momentum:

γ =
E˜̀
m˜̀=

m2

Ñ2

+ m2˜̀
2m

Ñ2
m˜̀ , γβ =

|~p˜̀|
m`

=
m2

Ñ2

−m2˜̀
2m

Ñ2
m˜̀ (21)

Now do the boost:

E
Ñ1

= γ
(
E∗

Ñ1

+ β|~p∗
Ñ1

| cos θ∗
)

(22)

where θ∗ is the angle between the ˜̀ decay direction and the ˜̀ boost (in the ˜̀
rest frame).
Plug in γ and βγ:

E
Ñ1

=
1

4m
Ñ2

m2˜̀
[(

m2

Ñ2

+ m2˜̀) (
m2˜̀+ m2

Ñ1

)
+

(
m2

Ñ2

−m2˜̀) (
m2˜̀−m2

Ñ1

)
cos θ∗

]
(23)
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Remember our original formula for the `` invariant mass:

M2
`` = m2

Ñ2

+ m2

Ñ1

− 2m
Ñ2

E
Ñ1

(24)

We want a kinematic endpoint: the maximum of M``.
This corresponds to the minimum of E

Ñ1
.

→ Minimum of E
Ñ1

occurs for cos θ∗ = −1:

E
Ñ1

∣∣∣min
=

1

2m
Ñ2

m2˜̀
(
m4˜̀+ m2

Ñ2

m2

Ñ1

)
(25)

Plugging in to M2
`` formula and simplifying gives

M``|max =


(
m2

Ñ2

−m2˜̀) (
m2˜̀−m2

Ñ1

)
m2˜̀


1/2

(26)

One endpoint measurement constrains
a combination of three SUSY masses.

from hep-ph/0211017
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Figure 5: Reach for observing dilepton endpoints in SUGRA models with 1 fb−1, 10 fb−1

and 100 fb−1. Theory (TH) and experimental constraints are also indicated [4].
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Figure 6: Dilepton + jet distributions for mSUGRA Point 5 as described in the text.

illustrated in Figure 5. In particular, a large part of the mSUGRA parameter space with
acceptable cold dark matter has light sleptons and hence enhanced !+!− decays.
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Can we do more?
Yes, if we look at longer decay chains.
→ more kinematic invariants to play with!

Consider the (longer) decay chain q̃ → Ñ2q → ˜̀±`∓q → Ñ1`+`−q.
• The invariant mass of q and the first lepton emitted (`1) has an endpoint
analogous to the `` endpoint, derived in exactly the same way:

Mq`1
|max =


(
m2

q̃
−m2

Ñ2

) (
m2

Ñ2

−m2˜̀)
m2

Ñ2


1/2

(27)

How to distinguish `1 from `2?
→ `1 likely to have higher energy.
With Mq`1

|max and M``|max we have
2 measurements and 4 unknowns.
Not doing better than before... yet.
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and 100 fb−1. Theory (TH) and experimental constraints are also indicated [4].
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Figure 6: Dilepton + jet distributions for mSUGRA Point 5 as described in the text.

illustrated in Figure 5. In particular, a large part of the mSUGRA parameter space with
acceptable cold dark matter has light sleptons and hence enhanced !+!− decays.
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More kinematic invariants:

• How about the invariant mass of q and the two leptons `1, `2?
q̃ → Ñ2q → ˜̀±`∓q → Ñ1`+`−q
Four-momentum conservation: p

q̃
= pq + p`1

+ p`2
+ p

Ñ1

Get the invariant mass:

M2
q`` = (pq + p`1

+ p`2
)2 = (p

q̃
− p

Ñ1
)2 = m2

q̃
+ m2

Ñ1

− 2p
q̃
· p

Ñ1
(28)

Let’s work in the q̃ rest frame: p
q̃
· p

Ñ1
= m

q̃
E

Ñ1
with E

Ñ1
in the q̃ rest frame

M2
q`` = m2

q̃
+ m2

Ñ1

− 2m
q̃
E

Ñ1
(29)

Want the kinematic endpoint: Mq``|max

→ find the minimum of E
Ñ1

in the q̃ rest frame.

This turns out to occur when the 2 leptons are parallel, and back-to-back
with the quark.
Two successive Lorentz boosts along the same axis:

(1) E′ = γ1E + γ1β1p p′ = γ1p + γ1β1E

Boost Ñ1 forward to keep the two leptons parallel
(2) E′′ = γ2E′ + γ2β2p′

Boost Ñ1 backward to put the quark in the forward direction
E′′ = γ2(γ1E + γ1β1p) + γ2β2(γ1p + γ1β1E) = γ1γ2[(1− β1β2)E + (β1 − β2)p]
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The boosts and E and p are:

γ1 =
m2

Ñ2

+ m2˜̀
2m

Ñ2
m˜̀ γ2 =

m2
q̃
+ m2

Ñ2

2m
q̃
m

Ñ2

E =
m2

` + m2

Ñ1

2m˜̀ (30)

β1 =
m2

Ñ2

−m2˜̀
m2

Ñ2

+ m2˜̀ β2 =
m2

q̃
−m2

Ñ2

m2
q̃
+ m2

Ñ2

p =
m2˜̀−m2

Ñ1

2m˜̀ (31)

Plug in to E′′ = E
Ñ1
|min in q̃ frame, and crunch through a lot of algebra:

E
Ñ1
|min =

m4

Ñ2

+ m2

Ñ1

m2
q̃

2m
q̃
m2

Ñ2

(32)

Finally plug into
M2

q``|max = m2
q̃
+ m2

Ñ1

− 2m
q̃
E

Ñ1
|min:

Mq``|max =


(
m2

q̃
−m2

Ñ2

) (
m2

Ñ2

−m2

Ñ1

)
m2

Ñ2


1/2

(33)
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Figure 5: Reach for observing dilepton endpoints in SUGRA models with 1 fb−1, 10 fb−1

and 100 fb−1. Theory (TH) and experimental constraints are also indicated [4].
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Figure 6: Dilepton + jet distributions for mSUGRA Point 5 as described in the text.

illustrated in Figure 5. In particular, a large part of the mSUGRA parameter space with
acceptable cold dark matter has light sleptons and hence enhanced !+!− decays.
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So far have 3 measurements and 4 unknowns! Getting better!

• There are also lower kinematic edges.
After putting a cut on M``, M`` > Mmax

`` /
√

2,
get a complicated formula for a lower kinematic endpoint for Mq``
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Figure 6: Dilepton + jet distributions for mSUGRA Point 5 as described in the text.

illustrated in Figure 5. In particular, a large part of the mSUGRA parameter space with
acceptable cold dark matter has light sleptons and hence enhanced !+!− decays.

• Can also consider the decay chain q̃ → Ñ2q → Ñ1hq with h → b̄b
Higgs mass can be measured elsewhere.
Then Mhq has a threshold (lower kinematic edge)
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• Get enough measurables to extract all the masses.
Uncertainties from blurring of the kinematic endpoints by backgrounds, wrong
jet/lepton combinations, also gluon radiation off the jet at NLO.

• Statistics are not super: we’re only making use of the events right near the
kinematic endpoints, and not using the information from the events in the
middles of the distributions!

Can we do better?
Each event contains kinematic information; can we use them all?

A new technique: [hep-ph/0410160]
Completely solve the kinematics of each SUSY cascade decay.
Assumptions:

• Selected events are from one particular decay chain
• SUSY particles in the decay chain are on mass shell

Each event gives you the 4-momenta of all the decay products except Ñ1.

Have to consider a longer decay chain: g̃ → qq̃ → qqÑ2 → qq`˜̀→ qq``Ñ1.
5 sparticles involved → 5 mass-shell conditions:

• m2

Ñ1

= p2

Ñ1

• m2˜̀ = (p
Ñ1

+ p`1
)2 • m2

Ñ2

= (p
Ñ1

+ p`1
+ p`2

)2

• m2
q̃
= (p

Ñ1
+ p`1

+ p`2
+ pq1)

2 • m2
g̃
= (p

Ñ1
+ p`1

+ p`2
+ pq1 + pq2)

2

Each qq``Ñ1 event contains 4 unmeasured degrees of freedom, the 4 compo-
nents of the Ñ1 4-momentum.
→ Each event picks out a 4-dimensional hypersurface in a 5-dimensional mass
parameter space.
Overlap multiple events in this hyperspace → find a discrete set of solutions
from overlap of different hypersurfaces.
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