QCD corrections to neutralino annihilation

Heather Logan

Carleton University

- V. Barger, W.-Y. Keung, HEL, G. Shaughnessy, A. Tregre, Phys. Lett. B633 (2006) 98-105 [hep-ph/0510257]
- V. Barger, W.-Y. Keung, HEL, G. Shaughnessy, work in progress

Why calculate neutralino annihilation?

Cross section controls dark matter relic abundance

Cross section controls indirect detection rates

Heather Logan

QCD corrections to neutralino annihilation

Why calculate QCD corrections?

QCD corr's can be significant in some regions of parameter space.

- Where $\chi\chi\to$ light fermions dominates, neutralinos are p-wave annihilators in the early universe
 - s-wave cross section is helicity-suppressed by m_f^2/m_χ^2 .
- Hard QCD radiation and $\chi\chi\to gg$ through a loop lift the m_f^2 suppression big effect on the s-wave cross section; not so much on the p-wave cross section.
- \rightarrow corrections tend to be most relevant for indirect-detection rates.

Consider $\chi\chi$ annihilation through squark exchange

Some typical diagrams:

etc.

The first diagram above can be reduced to an effective vertex described by a dimension-six operator suppressed by the squark mass \widetilde{M} :

$$\mathcal{L} = \frac{c}{\widetilde{M}^2} \mathcal{O}_6, \qquad \qquad \mathcal{O}_6 = (\bar{\chi} \gamma_\mu \gamma_5 \chi) (\bar{q} \gamma^\mu \gamma_5 q)$$

This is valid in the limit $m_\chi \ll \widetilde{M}$.

In the zero-velocity limit the neutralinos behave like a pseudoscalar.

 \mathcal{O}_6 is related to the divergence of the axial vector current of the quarks:

$$\mathcal{O}_6 \rightarrow \left[\bar{\chi} \frac{i\gamma_5}{2m_\chi} \chi \right] \left[\partial_\mu \left(\bar{q} \gamma^\mu \gamma_5 q \right) \right]$$

• If $m_q = 0$, the axial vector current is conserved at tree level, $\partial_{\mu} (\bar{q} \gamma^{\mu} \gamma_5 q) = 0$.

This is the m_f^2/m_χ^2 suppression showing up.

- There are two ways to lift this suppression:
- (1) Go beyond leading order in α_s to include the anomalous triangle diagram.
- (2) go to dimension-eight (or higher) by including hard gluon radiation.

Anomalous triangle diagram

The lifting of the m_f^2 suppression here is due to the well-known Partially Conserved Axial Current (PCAC):

 $\partial_{\mu} (\bar{q} \gamma^{\mu} \gamma_5 q) \neq 0$ due to the anomaly, even when $m_q = 0$.

The anomaly condition reads: (including m_q and only QCD interactions)

$$\partial_{\mu} \left(\bar{q} \gamma^{\mu} \gamma_{5} q \right) = 2 m_{q} \bar{q} i \gamma_{5} q + \frac{\alpha_{s}}{4\pi} G_{\mu\nu}^{(a)} \tilde{G}^{(a)\mu\nu}$$

Neglecting m_q , we can write the zero-velocity dimension-six $\chi\chi$ annihilation amplitude in the form

$$\mathcal{L}_{\text{eff}} = \left(\frac{c/m_{\chi}}{2\widetilde{M}^2}\right) (\bar{\chi}i\gamma_5\chi) \frac{\alpha_s}{4\pi} G_{\mu\nu}^{(a)} \tilde{G}^{(a)\mu\nu}$$

This is $\chi\chi$ annihilation into gluons.

[Still working in \widetilde{M}^{-2} approximation for squark propagator.]

Expression describes one massless quark running around the loop.

Anomalous triangle diagram

• Calculation first done for $\chi\chi \to \gamma\gamma$

[Rudaz 1989; Bergstrom 1989]

• Easy to extend to $\chi\chi \to gg$

[Flores, Olive, Rudaz 1989]

 $m_{q'} = 0$ result:

(sum is over 5 light quarks; top decouples)

$$v_{\text{rel}}\sigma(\chi\chi \to gg) = \frac{\alpha_s^2}{32\pi^3} m_\chi^2 \left[\sum_{q'} \frac{|g_\ell|^2}{M_{\widetilde{q}'_L}^2} + \frac{|g_r|^2}{M_{\widetilde{q}'_R}^2} \right]^2$$

where

$$g_{\ell} = -\sqrt{2}N_{11}g'(T_3 - Q) + \sqrt{2}N_{12}gT_3,$$
 $g_r = -\sqrt{2}N_{11}g'Q.$

We neglect left-right squark mixing $(m_{q'} = 0 \text{ approximation})$

ullet Full $m_{q'}$, \check{M} dependence is also known

[Drees, Jungman, Kamionkowski, Nojiri 1993]

What about beyond leading order?

 $\chi\chi\to gg$ is order α_s^2 : large scale dependence at leading order. Set scale $\mu_0=2m_\chi$, vary between $\mu_0/2\dots 2\mu_0$: $v\sigma$ varies by $\pm 16\%$.

At NLO, must include:

- (1) gluon splitting into quark or gluon pairs
- (2) radiation of a 3rd gluon off of the internal q' line χ
- (3) virtual corrections: gluons crossing the box, gluons connecting the box to a gluon leg
- (4) renormalization; e.g., gluon propagator bubbles containing quarks and gluons

The calculation is big and ugly.

Luckily we can use a trick to do it!

The trick:

In the zero-velocity limit, $\chi\chi\to gg$ is related to the anomaly equation:

$$\partial_{\mu}(\bar{q}'\gamma^{\mu}\gamma_{5}q') = 2m_{q'}\bar{q}'i\gamma_{5}q' + \frac{\alpha_{s}}{4\pi}G^{(a)}_{\mu\nu}\tilde{G}^{(a)\mu\nu}$$

• Neglecting the m_{q^\prime} term relates the axial vector current divergence to the two-gluon operator:

$$\partial_{\mu}(\bar{q}'\gamma^{\mu}\gamma_{5}q') \simeq \frac{\alpha_{s}}{4\pi}G_{\mu\nu}^{(a)}\tilde{G}^{(a)\mu\nu}$$

• If we take the opposite limit, $m_{q'}\gg m_\chi$, then the anomaly equation relates a pseudoscalar coupling to the same two-gluon operator:

$$0 \simeq 2m_{q'}\bar{q}'i\gamma_5q' + \frac{\alpha_s}{4\pi}G^{(a)}_{\mu\nu}\tilde{G}^{(a)\mu\nu}$$

(the term on the left-hand side becomes negligible in the $m_{q'}\gg m_\chi$ limit)

$$0 \simeq 2m_{q'}\overline{q}'i\gamma_5q' + \frac{\alpha_s}{4\pi}G^{(a)}_{\mu\nu}\widetilde{G}^{(a)\mu\nu}$$

This describes pseudoscalar decay through a heavy quark triangle in the limit $m_Q\gg m_A$.

This helps us because of the Adler-Bardeen theorem, which tells us that the anomaly equation holds to all orders in α_s .

Should be able to relate $\chi\chi\to gg$ at NLO to $A\to gg$ at NLO.

 $A \rightarrow gg$ at NLO calculated by Spira, Djouadi, Graudenz, Zerwas (1995):

$$\Gamma_{\text{NLO}}(A \to gg) = \Gamma_{\text{LO}}(A \to gg) \times \left[1 + \frac{\alpha_s}{\pi} \left(\frac{97}{4} - \frac{7}{6} N_f + \frac{33 - 2N_f}{6} \log \frac{\mu^2}{4m_\chi^2} \right) \right]$$

Correction is multiplicative in the $m_Q\gg m_A$ approximation.

How can we use this?

Following [Chetyrkin, Kniehl, Steinhauser, Bardeen 1998]:

Start with the bare Yukawa Lagrangian for interactions of A^0 with quarks:

$$\mathcal{L} = -\frac{A}{v} \left[\sum_{i=1}^{n_l} m_{q_i}^0 \bar{q}_i^0 i \gamma_5 q_i^0 + m_t^0 \bar{t}^0 i \gamma_5 t^0 \right]$$

Taking the limit $m_t \to \infty$ and setting $m_{q_i} = 0$ for the light quarks, we can write this as a combination of pseudoscalar operators:

$$\mathcal{L} = -\frac{A}{v} \left[C_1^0 O_1^0 + C_2^0 O_2^0 + \cdots \right]$$

where

$$O_1^0 = G_{\mu\nu}^{0,a} \tilde{G}^{0,a\mu\nu}, \qquad O_2^0 = \partial_\mu J_5^{0,\mu},$$
 with
$$J_5^{0,\mu} = \sum_{i=1}^{n_l} \bar{q}_i^0 \gamma^\mu \gamma_5 q_i^0$$

Now the bare lagrangian must be renormalized:

- $J_5^{0,\mu}$ is the colour-singlet axial-vector current, which is renormalized multiplicatively; $\partial_\mu J_5^{0,\mu}$ likewise is renormalized multiplicatively.
- $G_{\mu\nu}^{0,a}\tilde{G}^{0,a\mu\nu}$ mixes under renormalization: $\partial_{\mu}J_{5}^{0,\mu}$ feeds into $G_{\mu\nu}^{0,a}\tilde{G}^{0,a\mu\nu}$ at one loop because you can close the quark loop.

So we'll get:

$$\mathcal{L} = -\frac{A}{v} \left[C_1 O_1 + C_2 O_2 + \cdots \right],$$

$$O_1 = Z_{11} O_1^0 + Z_{12} O_2^0, \qquad O_2 = Z_{22} O_2^0.$$

The $A \to gg$ decay is the imaginary part of the $A \to A$ amplitude, which is described by correlators $\langle O_i O_j \rangle$:

$$\Gamma(A \to gg) = \frac{\sqrt{2}G_F}{M_A} \left[C_1^2 \text{Im} \langle O_1 O_1 \rangle + 2C_1 C_2 \text{Im} \langle O_1 O_2 \rangle + C_2^2 \text{Im} \langle O_2 O_2 \rangle \right]$$

- $\langle O_1 O_1 \rangle$ first appears at order α_s^0 .
 - Diagram →
- $\langle O_1 O_2 \rangle$ first appears at order α_s^1 .
- Need to radiate a gluon from $q\bar{q}$ in O_2 and split a gluon into quarks in O_1 .
- $\langle O_2 O_2 \rangle$ first appears at order α_s^2 .
- Kinematics kills $\langle O_2O_2\rangle$ at leading order for $m_q=0$. Need to make two boxes and connect the gluons.
- C_1 starts at order α_s^1 , since $AG_{\mu\nu}^a \tilde{G}^{a\mu\nu}$ is generated by the top loop.
- C_2 starts at order α_s^2 , since $A\partial_\mu J_5^\mu$ is generated at two loops by attaching a quark line to the gluons that were generated by the top loop.

$$C_1^2 \text{Im} \langle O_1 O_1 \rangle \sim \alpha_s^2 + \cdots$$

$$C_1C_2\operatorname{Im}\langle O_1O_2\rangle\sim\alpha_s^4+\cdots$$

$$C_2^2 \text{Im} \langle O_2 O_2 \rangle \sim \alpha_s^6 + \cdots$$

The $A \to gg$ calculation transfers directly over to $\chi\chi \to gg$ at NLO only:

- LO: want $C_1^2 \mathrm{Im} \langle O_1 O_1 \rangle$ at leading α_s^2 order.
 - This is just LO $A \rightarrow gg$.
- NLO: want $C_1^2 \text{Im} \langle O_1 O_1 \rangle$ at NLO, α_s^3 .
 - This is just NLO $A \rightarrow gg$.
- NNLO: want $C_1^2 \text{Im} \langle O_1 O_1 \rangle$ at NNLO, α_s^4 .
- Cannot get this simply from $A \to gg$, since $C_1C_2\langle O_1O_2\rangle$ also contributes at this order.

We get $\chi\chi \to gg$ at NLO "for free":

$$v_{\text{rel}}\sigma_{\text{NLO}}(\chi\chi\to gg) = v_{\text{rel}}\sigma_{\text{LO}}(\chi\chi\to gg)$$

$$\times \left[1 + \frac{\alpha_s}{\pi} \left(\frac{97}{4} - \frac{7}{6}N_f + \frac{33 - 2N_f}{6}\log\frac{\mu^2}{4m_\chi^2}\right)\right]$$

$$= v_{\text{rel}}\sigma_{\text{LO}}(\chi\chi\to gg) \left[1 + 0.62\right]$$

where the last line is for $\mu = 2m_{\chi} = 2 \times (100 \text{ GeV})$ and $N_f = 5$.

 $\chi\chi\to gg$ cross section is increased by some 60% at NLO.

Where is this useful?

- Early universe: $\chi\chi\to gg$ typically only a small contribution to the total annihilation cross section. Not particularly important.
- Present day: $\chi\chi\to gg$ can be the dominant annihilation mode. Corrections are important for total annihilation cross section and branching fractions \to can affect indirect DM detection rates.

Leading QCD corrections to p-wave $\chi\chi\to q\bar{q}$ were calculated in [Flores, Olive, Rudaz 1989] — not a huge effect

Further directions: the dimension-eight amplitude

Remember there were two ways to lift the m_f^2/m_χ^2 suppression:

- (1) using the anomaly
- (2) going to dimension-eight.

The dimension-eight amplitude was calculated for $\chi\chi\to f\bar f\gamma$ in [Flores, Olive, Rudaz 1989]

The full calculation was done in [Drees, Jungman, Kamionkowski, Nojiri 1993].

For $m_q \simeq 0$, the leading $1/M_{\widetilde{q}}^8$ part is

$$v_{\text{rel}}\sigma(\chi\chi\to q\bar{q}g) = \frac{4\alpha_s}{15} \frac{m_\chi^6}{16\pi^2} \left[\frac{|g_\ell|^4}{M_{\widetilde{q}_L}^8} + \frac{|g_r|^4}{M_{\widetilde{q}_R}^8} \right].$$

Not yet computed:

interference term between

- (1) dimension-eight $\chi\chi\to q\bar{q}g$, and
- (2) dimension-six $\chi\chi\to q\bar{q}g$ through the box with gluon splitting to $q\bar{q}$

- Interference term is order α_s^2 same order as LO $\chi\chi\to gg$
- Interference term is order $1/\widetilde{M}^6$ more suppressed than $\chi\chi\to gg$ but less suppressed than pure dimension-eight cross section. This is work in progress.

$$\begin{array}{ll} v_{\rm rel}\sigma & \sim & \frac{\alpha_s m_\chi^6}{M_{\widetilde{q}}^8} & (\chi\chi\to q\overline{q}g \; {\rm tree\; level}) \\ \\ & + & \frac{\alpha_s^2 m_\chi^2}{M_{\widetilde{q}}^4} \left[1 & (\chi\chi\to gg \; {\rm LO}) \right. \\ \\ & + & (\chi\chi\to gg \; {\rm NLO}) \\ \\ & + \frac{m_\chi^2}{M_{\widetilde{q}}^2} & (\chi\chi\to q\overline{q}g \; {\rm dim6-dim8\; interference}) \right]. \end{array}$$

Conclusions

- Precision cosmology motivates calculation at higher orders.
- Neutralinos are Majorana fermions s-wave annihilation is helicity suppressed. Processes that lift the suppression can have a big impact on present-day annihilation rates.
- We calculated NLO QCD corrections to $\chi\chi\to gg$ by using the Adler-Bardeen theorem and known NLO QCD corrections to $A^0\to gg$: about a +60% effect.
- Calculation of interference term between $\chi\chi\to g^*g\to q\bar{q}g$ and dimension-8 $\chi\chi\to q\bar{q}g$ in progress.

Same α_s order as LO $\chi\chi\to gg$; relative $m_\chi^2/M_{\widetilde q}^2$ suppression.

Implications for indirect detection still need to be worked out.