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Outline

Lecture 1:

- Lightning review of SM Higgs

- Conceptual framework for extended Higgs sectors

- Higgs mixing: SM + Singlet

- New gauge structures: Georgi-Machacek model
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- New fermion structures: Natural flavour cons. & 2HDM pheno
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- Dark matter: Inert 2HDM
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Introducing the Two-Higgs-Doublet Model (2HDM)

Add a second SU(2)L doublet of complex scalars with same hy-
percharge as SM Higgs. [T.D. Lee 1973;

giant review article by Branco et al. 1106.0034]

SM:

(
φ+

φ0

)
→ physical Higgs boson h0;

Goldstone bosons “eaten” by W±, Z

2HDM:

(
φ+

1
φ0

1

)
,

(
φ+

2
φ0

2

)
→ physical Higgs bosons h0, H0, A0, H±;

Goldstone bosons “eaten” by W±, Z

Gauge-kinetic terms completely determined by gauge invariance:

Lgauge = (DµΦ1)†(DµΦ1) + (DµΦ2)†(DµΦ2)

with the covariant derivative for both doublets same as in SM.
Gauge boson masses become:

M2
W =

g2v2
1

4
+
g2v2

2

4
, M2

Z =
(g2 + g′2)v2

1

4
+

(g2 + g′2)v2
2

4

Preserves ρ ≡ M2
W

M2
Z cos2 θW

= 1; requires v2
1 + v2

2 = v2
SM.
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Introducing the Two-Higgs-Doublet Model (2HDM)

Define a new parameter tanβ = v2/v1.
Higgs boson couplings to W and Z are now shared between the
two CP-even neutral fields:

φ
0,r
1 VµVν ∼ 2i

M2
V

vSM
gµν × cosβ

φ
0,r
2 VµVν ∼ 2i

M2
V

vSM
gµν × sinβ

φ
0,r
1 and φ

0,r
2 are not mass eigenstates in general; just like in SM

+ singlet, there will be Higgs mixing by a new angle α:

h0 = − sinαφ0,r
1 + cosαφ0,r

2 , H0 = cosαφ0,r
1 + sinαφ0,r

2

Physical Higgs couplings to W and Z then become:

h0VµVν ∼ 2i
M2
V

vSM
gµν × sin(β − α)

H0VµVν ∼ 2i
M2
V

vSM
gµν × cos(β − α)
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Introducing the Two-Higgs-Doublet Model (2HDM)

Mixing among the charged and the CP-odd components of the
Higgs fields is controlled by tanβ (since the composition of the
Goldstone bosons is fixed by the relative vevs):

A0 = − sinβ φ0,i
1 + cosβ φ0,i

2 , G0 = cosβ φ0,i
1 + sinβ φ0,i

2
H+ = − sinβ φ+

1 + cosβ φ+
2 , G+ = cosβ φ+

1 + sinβ φ+
2

(Note that I am ignoring the possibility of CP violation, which would cause

mixing among h0, H0, and A0. More on this later.)

h0 and H0 can be produced singly via weak boson fusion:
- pp→W ∗W ∗ (or Z∗Z∗) → h0/H0

The other states can be produced in pairs via gauge interactions,
in processes like:
- pp→ Z∗/γ∗ → H+H−
- pp→ Z∗ → H0A0 (or h0A0)
- pp→W ∗ → H±h0 (or H±H0 or H±A0)

(Production via fermion couplings coming soon!)
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Introducing the 2HDM: Higgs basis

There is a simpler way to think about this mixing: the so-called
“Higgs basis”.

The two doublets have exactly the same quantum numbers;
nothing stops us from redefining the two doublets as linear com-
binations of what we wrote before:

Φv = cosβΦ1 + sinβΦ2, Φ0 = − sinβΦ1 + cosβΦ2

This basis is defined so that the vev lives entirely in Φv:

Φv =

(
G+

(vSM + (sβ−αh0 + cβ−αH0) + iG0)/
√

2

)

Φ0 =

(
H+

((cβ−αh0 − sβ−αH0) + iA0)/
√

2

)

⇒ Read off the gauge couplings. Only the combination of h0

and H0 that lives in Φv partakes of couplings of the form hVµVν,
because these require one vev insertion.
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2HDM fermion couplings

Most general gauge-invariant Yukawa couplings: generically just
two copies of those of the SM:

LY uk. = −Y d1
ij Q̄LiΦ1dRj − Y u1

ij Q̄LiΦ̃1uRj − Y `1ij L̄LiΦ1eRj + h.c.

−Y d2
ij Q̄LiΦ2dRj − Y u2

ij Q̄LiΦ̃2uRj − Y `2ij L̄LiΦ2eRj + h.c.

This immediately causes a phenomenological problem: flavour-
changing neutral Higgs interactions.

Rotating to the fermion mass basis diagonalizes only the combi-
nations Md = (Y d1v1+Y d2v2)/

√
2, etc.; orthogonal combinations

are not diagonalized! In the Higgs basis:

LY uk. = −
√

2Md

vSM
Q̄LΦvdR − Y d0 Q̄LΦ0dR + · · ·

Y d0 is not automatically diagonalized by rotation to the fermion
mass basis. Gives rise to processes like K0–K̄0 and B0–B̄0 os-
cillations at tree level from A0 exchange. Very constrained!
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2HDM fermion couplings: Natural Flavour Conservation

Traditional solution to avoid severe FCNC constraints: Natural
Flavour Conservation [Glashow, Weinberg; Paschos 1977]

Philosophy: absence of large Higgs-mediated flavour-changing
neutral currents (FCNCs) is due to symmetry structure of model,
not tuning of parameters.

FCNCs can be avoided if the mass matrix in each sector of
fermions (up-type quarks; down-type quarks; charged leptons)
comes from coupling to exactly one Higgs doublet.

Example:

LY uk. = −Y d1
ij Q̄LiΦ1dRj − Y u1

ij Q̄LiΦ̃1uRj − Y `1ij L̄LiΦ1eRj + h.c.

−Y d2
ij Q̄LiΦ2dRj − Y u2

ij Q̄LiΦ̃2uRj − Y `2ij L̄LiΦ2eRj + h.c.

Only one Yukawa matrix for each type of fermion → automati-
cally diagonalized in the mass basis.
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2HDM fermion couplings: Natural Flavour Conservation

Traditional solution to avoid severe FCNC constraints: Natural
Flavour Conservation [Glashow, Weinberg; Paschos 1977]

Philosophy: absence of large Higgs-mediated flavour-changing
neutral currents (FCNCs) is due to symmetry structure of model,
not tuning of parameters.

FCNCs can be avoided if the mass matrix in each sector of
fermions (up-type quarks; down-type quarks; charged leptons)
comes from coupling to exactly one Higgs doublet.

Example:

LY uk. = −Y d1
ij Q̄LiΦ1dRj − 0 Q̄LiΦ̃1uRj − Y `1ij L̄LiΦ1eRj + h.c.

− 0 Q̄LiΦ2dRj − Y u2
ij Q̄LiΦ̃2uRj − 0 L̄LiΦ2eRj + h.c.

Only one Yukawa matrix for each type of fermion → automati-
cally diagonalized in the mass basis.
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2HDM fermion couplings: Natural Flavour Conservation

Implement Natural Flavour Conservation by imposing a Z2 sym-

metry (X → −X) acting on one of the Higgs fields and some of

the right-handed fermion fields.

Choose Φ1 → −Φ1, Φ2 → Φ2. Then there are four physically-

distinct choices of right-handed fermion charges:

uR dR eR Φ1 Φ2

Type I + + + – u, d, `
Type II + − − d, ` u (same in MSSM)

Type X + + − ` u, d (a.k.a. Leptonic)

Type Y + − + d u, ` (a.k.a. Flipped)

These choices control the pattern of the physical Higgs couplings

to fermions.
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2HDM fermion couplings: Natural Flavour Conservation

Example 1: Charged Higgs decays to fermions (all × ig√
2MW

):

Model H+ūidj H+ν̄i`i
Type I Vij(cotβmuiPL − cotβmdjPR) cotβm`iPR
Type II Vij(cotβmuiPL + tanβmdjPR) tanβm`iPR
Type X Vij(cotβmuiPL − cotβmdjPR) tanβm`iPR
Type Y Vij(cotβmuiPL + tanβmdjPR) cotβm`iPR

Physics controlled by tanβ (can be large) and MH+.

1 10
tanβ

10−5

10−4

10−3

10−2

10−1

100

BR
(H
→

X)

Type−I
mH=150 GeV, sin(β−α)=1

bb
ττ
gg

cc

ss γγ

µµ
Zγ

1 10
tanβ

Type−II
mH=150 GeV, sin(β−α)=1

bb

ττ

gg
cc ss

µµγγ

1 10
tanβ

Type−X
mH=150GeV, sin(β−α)=1

bb

gg

cc

ss
γγ

ττ

µµ

1 10
tanβ

Type−Y
mH=150GeV, sin(β−α)=1

bb

gg

ττ

cc

γγ

µµ

ss

1 10
tanβ

10−5

10−4

10−3

10−2

10−1

100

BR
(A
→

X)

Type−I
mA=150 GeV, sin(β−α)=1

bb
gg
ττ

cc
γγ
ss
µµ

Zγ
1 10

tanβ

Type−II
mA=150GeV, sin(β−α)=1

bb

ττ

gg
cc

γγ

Zγ

ss

µµ

1 10
tanβ

Type−X
mA=150GeV, sin(β−α)=1

bb
gg

cc
γγ

ss

Zγ

ττ

µµ

1 10
tanβ

Type−Y
mA=150GeV, sin(β−α)=1

bb

ggττ

cc
γγ
µµ

Zγ

ss

1 10
tanβ

10−5

10−4

10−3

10−2

10−1

100

BR
(H

+ →
X)

Type−I
mH

+=150GeV, sin(β−α)=1

τν

cs

cb
µν

1 10
tanβ

Type−II
mH

+=150GeV, sin(β−α)=1

τν

cs
cb

µν

1 10
tanβ

Type−X
mH

+=150GeV, sin(β−α)=1

τν

cs
cb

µν

1 10
tanβ

Type−Y
mH

+=150GeV, sin(β−α)=1

τν

cs

µν

cb

FIG. 2: Decay branching ratios of H, A and H± in the four different types of THDM as a function

of tan β for mH = mA = mH± = 150 GeV and M = 149 GeV. The SM-like limit sin(β − α) = 1 is

taken, where h is the SM-like Higgs boson.

small or negligible. The decay pattern of h is almost the same as that of the SM Higgs

boson with the same mass at the leading order except for the loop-induced channels when

sin(β − α) = 1. In this case, H does not decay into the gauge boson pair at tree level, so

it mainly decays into fermion pairs2. We note that A and H± do not decay into the gauge

boson pair at the tree level for all values of sin(β − α).

The decay patterns are therefore completely different among the different types of Yukawa

interactions [11, 12]. For the decays of H and A, we take into account the decay channels

2 In the case with a more complicated mass spectrum a heavy Higgs boson can decay into the states which

contain lighter Higgs bosons [34].

8

Aoki et al, Phys. Rev. D80, 015017(2009)
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2HDM fermion couplings: Natural Flavour Conservation

Example 2: b̄b (or gg) → H0/A0 → ττ gives very strong sensitivity
in Type II (grey excluded area; plot is for an MSSM scenario).
Sensitivity greatly reduced in Type I & X (no production enhance-
ment); a bit reduced in Type Y (less-sensitive b̄b final state).

[ATLAS summary plot, May 2024]
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2HDM fermion couplings: flavour violation?

What if we allow flavour violation? ⇒ Interesting new processes!

- h0 → τµ, t→ ch0, etc.

Two different types of motivation:

- Phenomenological models to address experimental anomalies

(e.g. flavour-universality-violating meson decays)

- Symmetry-driven models to address theoretical puzzles (e.g.

strong CP problem)

Have to obey stringent constraints from meson mixing & decays.
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2HDM fermion couplings: flavour violation? - expt driven

Up to recently, there was a rather interesting deviation (a few
sigma) from the SM in R

K(∗):

R
K(∗) =

BR(B → K(∗)µ+µ−)

BR(B → K(∗)e+e−)

Theoretically very “clean” observable: all of the hadronic un-
certainties should cancel out! SM: e and µ should be entirely
interchangeable aside from their masses.

Together with other “anomalies” in rare meson decays, this sug-
gested new physics causing lepton universality violation.

One way to achieve this is a 2HDM with flavour violation.
- Allow the most generic Yukawa coups for both Higgs doublets.
- Apply constraints from other B decays.
- Check wiggle room for couplings to leptons not strictly pro-
portional to their masses – can achieve [previously] observed
deviation using a relatively light charged Higgs.
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2HDM fermion couplings: flavour violation? - expt driven

How does this work? Recall the Higgs basis:

Φv =

(
G+

(vSM + (sβ−αh0 + cβ−αH0) + iG0)/
√

2

)

Φ0 =

(
H+

((cβ−αh0 − sβ−αH0) + iA0)/
√

2

)

Yukawa couplings to Φ0 (where H+ lives) need not be propor-
tional to the fermion masses:

LY uk. = −M
dvSM√

2
Q̄LΦvdR − Y d0 Q̄LΦ0dR + · · ·

b

s

l

lγ

Zs
t

H±
b

s

l

lγ

Z

b
t

H±

b

s

l

lγ

Z
H±

t

t

b

s

l

lγ

Z
t

H±

H±

t

H±

W±

νl

b

s

l

l

b

s

l

l

t

W±

H±

νl

b

s

l

l

t

H±

H±

νl

1

Figure 4. The sketched electroweak penguin and box diagrams for b ! s`+`� mediated by H±

and W± bosons.

boson contribution comes from Z and �-penguin are :

C9 = ⇠u
tt⇠

u⇤
ts f3(xt, yH±) + ⇠d

bb⇠
u⇤
ts xdf4(xt, yH±) + ⌘W C10 � 4⌘0W Re(⇠u

tt⇠
µ⇤
22 xµf5(xt, yH±))

+ ⌘0W ⇠u
tt⇠

u⇤
ts |⇠µ

22|2xµf6(xt, yH±) + ⌘0W Re(⇠u
tt⇠

µ⇤
22 )xµf7(xt, yH±) (4.4)

C10 = ⌘0W

✓
⇠u
tt⇠

u⇤
ts f8(xt, yH±) + ⇠d

bb⇠
u⇤
ts xbf9(xt, yH±) + ⇠u

tt⇠
u⇤
ts |⇠µ

22|2xµf10(xt, yH±) (4.5)

+ Re(⇠u
tt⇠

µ⇤
22 )xµf11(xt, yH±)

◆

CP =
p

xbxµ


⇠u⇤
tt ⇠

d
bb⌘

0
W g1(xt, yH±) + ⇠u

tt⇠
u⇤
ts

✓
g2(xt, yH±) � ⌘0W g3(xt, yH±)

◆
(4.6)

+ ⌘0W

✓
⇠µ
22⇠

u⇤
tt g4(xt, yH±) � ⇠µ⇤

22 ⇠
u
ttg5(xt, yH±) � 2⇠d

bb⇠
µ⇤
22 g6(xt, yH±)

◆�

CS =
p

xbxµ⌘
0
W


⇠µ
22⇠

u⇤
tt g4(xt, yH±) + ⇠µ⇤

22 ⇠
u
ttg5(xt, yH±) + 2⇠d

bb⇠
µ⇤
22 g6(xt, yH±)

�
(4.7)

where ⌘W = (�1 + 4 sin2 ✓W ) and ⌘0W = sin�2 ✓W . With xi = m2
i /m2

W with i = t, b, µ and

yH± = m2
H±/m2

W . The corresponding loop functions fi and gi can be found in Appendix

A. In what follow, we will concentrate our discussion on the Wilson coe�cients C9 and C10

which can be extracted from di↵erent angular observables, in particular in the case of B !
K⇤µ+µ� which provides a several observables through angular study of the decay which

have been experimentally studied at LHCb[76, 77] , CMS[6, 78], ATLAS[79], Belle[7, 80]

and BABAR [81]. Several observables have shown deviations from SM predictions. It

started with the set of observables P 0
5, Q5 = P 0µ

5 � P 0e
5 , forward-backward asymmetry

(AFB), lepton-flavour universality violating ratio RK⇤ .

Several global fits exist for NP contributions to the Wilson coe�cients C9,10 [10, 22, 82].

These fits includes the branching ratios of B ! Kµ+µ�, B ! K⇤µ+µ�, Bs ! �µ+µ�,

Bs ! Xsµ
+µ� (restricted only to the range q2 2 [1,6] GeV2), B ! Xs�, Bs ! µ+µ� as

well as some isospin symmetry and time-dependent CP asymmetry of B ! K⇤�. To be

– 14 –

SM: W coupling to leptons universal;

lepton flavour dependence is only from

m` factors. Flavour violation intro-

duces H+ couplings not strictly pro-

portional to m`.

[diagram from Arhrib et al., 1710.05898]
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2HDM fermion couplings: flavour violation? - theory driven

One of the mysteries of the SM is the strong CP problem: why

there is no observed CP violation in the strong interactions.

Super tight constraint: neutron electric-dipole-moment constraint

→ relevant parameter . 10−10 (vs. “natural” size ∼ O(1)).

- Usual solution is Peccei-Quinn mechanism → QCD axion

- Alternative solution is Nelson-Barr approach: no CP violation at

all in the Lagrangian (so that strong-CP phase is zero); observed

CP violation in CKM matrix comes from spontaneous breaking

of CP. Have to also avoid loop-induced strong-CP phase up to

2 loops!

(In the SM, CP is explicitly violated by the Yukawa couplings.)

Very challenging model-building; seems to always give rise to

some kind of extra flavour violation.
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2HDM fermion couplings: flavour violation? - theory driven

Attempt to implement Nelson-Barr idea in 2HDM:

- Both doublets couple to all types of fermions.

- All entries in the Yukawa matrices are real.

- Yukawa matrices constrained by generation-dependent symme-

try to have zeroes in certain strategic places.

- Generate the CP-violating phase of the CKM matrix from a

relative phase between the vevs of the two doublets.

Example: Z3 symmetry [Ferreira & Lavoura, 1904.08438]

Charges under Z3: Φ1 uncharged, Φ2 charge 2;
Generation QL pR nR

1 2 1 0
2 1 1 0
3 0 0 1

Any Lagrangian term must be (i) invariant under CP (i.e., real)

and (ii) net charge 0 (mod 3) under the Z3.
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2HDM fermion couplings: flavour violation? - theory driven

Attempt to implement Nelson-Barr idea in 2HDM:

CP and Z3 charges lead to highly restricted Yukawa matrices:
e.g. for down quarks, (all entries real!) [Ferreira & Lavoura, 1904.08438]

Y d1 =




0 0 0
0 0 b1
d1 f1 0


 Y d2 =



d2 f2 0
0 0 0
0 0 b2




Ideal situation would be to spontaneously break CP.
This model requires explicit but soft CP and Z3 breaking by the
dimension-2 terms in the scalar potential.

- Generate the CKM matrix including its CP-violating phase!
- No strong-CP violation at tree level or one loop!
- Two-loop not yet checked (hard calc.); may be too large.
- FCNCs from Higgs exchange → constraints (manageable but
kind of fine-tuned).
- Model-building: can we get spontaneous CP breaking?
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Outline

Lecture 1:

- Lightning review of SM Higgs

- Conceptual framework for extended Higgs sectors

- Higgs mixing: SM + Singlet

- New gauge structures: Georgi-Machacek model

Lecture 2: Two-Higgs-Doublet Model and its delights

- New fermion structures: Natural flavour cons. & 2HDM pheno

- More new fermion structures: Flavour violation

- New scalar potential options: CP violation

- Dark matter: Inert 2HDM
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2HDM scalar potential

Most general gauge-invariant scalar potential for the 2HDM is:

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
[
m2

12Φ†1Φ2 + h.c.
]

+
1

2
λ1

(
Φ†1Φ1

)2
+

1

2
λ2

(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

) (
Φ†2Φ2

)
+ λ4

∣∣∣Φ†1Φ2

∣∣∣
2

+
{

1

2
λ5

(
Φ†1Φ2

)2
+
[
λ6

(
Φ†1Φ1

)
+ λ7

(
Φ†2Φ2

)] (
Φ†1Φ2

)
+ h.c.

}

[Gunion & Haber hep-ph/0207010]

Imposing Z2 sym (Φ1 → −Φ1) for NFC kills off m2
12, λ6, and λ7.

Minimize ⇒ find v1 and v2 (trade them for m2
11 and m2

22).
Compute mass matrices ⇒ find masses and mixing angle α.

Exact Z2: all masses-squared ∼ λv2; upper bound of ∼ 700 GeV!
Types II, X, and Y excluded by Bayesian global fit including LHC
data (Chowdhury & Eberhardt, 2017)

Allow soft breaking of Z2: reinstate m2
12 ⇒ decoupling limit; all

4 “Types” are fine because extra Higgses can be made heavier.
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2HDM scalar potential and CP violation

Two of the parameters of the softly-broken-Z2-symmetric scalar

potential can be complex (only their relative phase is physical):

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
[
m2

12Φ†1Φ2 + h.c.
]

+
1

2
λ1

(
Φ†1Φ1

)2
+

1

2
λ2

(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

) (
Φ†2Φ2

)
+ λ4

∣∣∣Φ†1Φ2

∣∣∣
2

+
{

1

2
λ5

(
Φ†1Φ2

)2
+ h.c.

}
.

Most important effect is to induce mixing between h0, H0 and A0:

three neutral mass eigenstates, none of them CP eigenstates!



h1
h2
h3


 = R



φ

0,r
v

φ
0,r
0
φ

0,i
0


 = R




cβφ
0,r
1 + sβφ

0,r
2

−sβφ0,r
1 + cβφ

0,r
2

−sβφ0,i
1 + cβφ

0,i
2




(Convention: express scalars first in the Higgs basis; convenient since Gold-

stone boson is not affected by this new mixing.)
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2HDM scalar potential and CP violation

New collider phenomena:

- Mixed-CP couplings of h0
125: e.g. ht̄t ∼ −imt

v (a+ iγ5b)

(Rich LHC experimental program already!)

- All three neutral Higgs bosons (h1, h2, and h3) couple to V V

at tree level.

(Sum rule from orthogonality of mixing matrix: squares of couplings add up

to SM strength.)

- Novel Higgs-to-Higgs decay: h3 → h1h2 (two different-mass

scalars in the final state).

(Real 2HDM: can have H0 → h0h0, but no A0 → H0h0 or H0 → A0h0; forbidden

by CP conservation!)
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2HDM scalar potential and CP violation

Pattern of CP violation in Higgs couplings reveals whether CPV
comes from scalar potential (only 1 new phase!) or from complex
flavour-violating Yukawa couplings (different phases for different
fermions!).

Example: Type-II Complex 2HDM: same R matrix for all cou-
plings

h1t̄t ∼
−imt

v

[
(R11 + cotβR12)− iγ5R13 cotβ

]

h1τ̄ τ ∼
−imτ

v

[
(R11 − tanβR12)− iγ5R13 tanβ

]

Loop-induced CP-odd part of h1V V coupling again comes en-
tirely from the mixing – proportional to R13.




h1

h2

h3


 = R




φ0,r
v

φ0,r
0

φ0,i
0


 = R




cβφ
0,r
1 + sβφ

0,r
2

−sβφ0,r
1 + cβφ

0,r
2

−sβφ0,i
1 + cβφ

0,i
2



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2HDM scalar potential and CP violation

CP violation in scalar potential leads to 2HDM contribution to
electric dipole moments (EDMs).

Electron EDM: |de| < 4.1× 10−30e cm (JILA 2022)

Full 2-loop calculation in Complex 2HDM (f depends on Type):
(

1 TeV

M

)2
Im(λ5)× f(sin2 β, cos2 β) . 0.5− 1%

Altmannshofer, Gori, Hamer, & Patel, 2020

A bit uncomfortably fine-tuned, even for heavy Higgses ∼TeV
scale.

Nevertheless, there are good theoretical reasons to take the
Complex 2HDM seriously: the known CP violation in quark
Yukawa couplings generates divergent radiative corrections to
the scalar potential CP phase... at 7 loops. Must have a coun-
terterm in the theory, but the coefficient can be set tiny without
worrying about it being regenerated by loops. [de Lima & me 2024]
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A 2HDM variant for dark matter

Two basic facts about dark matter:

- It is electrically neutral (or at most, milli-charged).

- It has stuck around since the beginning of the universe (stable,

or at least very long-lived).

Easiest way to make a particle stable is to have it be the lightest

state that carries a particular conserved charge.

- Electron is stable because it’s the lightest electrically-charged

particle.

- Proton is stable because it’s the lightest baryon.

(Proton decay? ↔ baryon number violation)

Dark matter model-building typically involves introducing a new

conserved quantum number carried by the dark matter candidate.
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A 2HDM variant for dark matter: Inert 2HDM

“Inert” 2HDM is built in exactly this way.
[Barbieri, Hall, & Rychkov, hep-ph/0603188]

Write down what’s essentially the Type I 2HDM: Z2 symmetry
under which Φ2 → −Φ2 while all other fields are unchanged.
→ Yukawa couplings: all fermions couple to Φ1 and none to Φ2.

But now, choose the values of the scalar potential parameters
so that Φ2 does not get a vev. → Z2 remains unbroken!

Unbroken Z2 prevents mixing between the two doublets:

Φ1 =

(
G+

(v + h0
125 + iG0)/

√
2

)
Φ2 =

(
H+

(H0 + iA0)/
√

2

)

The lightest member of Φ2 is stable (choose parameters so that
it is H0 or A0).

Collider signatures: H±, H0, A0 pair-produced via gauge inter-
actions; decay by W/Z emission to lightest Z2-odd state, which
escapes the detector as missing energy.
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Summary of lecture 2 and Outlook

A sampling of all the things you can do with 2HDMs:

- Natural Flavour Conservation

- Flavour violation

- CP violation

- 2HDM for dark matter

A bit more emphasis on underlying theoretical motivations:

- Symmetries

- Attempts to solve theoretical problems in a more “natural” way

- Arguments from QFT about why violations of SM accidental-

symmetries in more complicated models should not simply be

ignored

Physics of extended Higgs sectors is rich and deep.

Experimental probes are getting more and more interesting.
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