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What is CP?

1) Parity operation (P): inversion of coordinate system

~r → −~r, ~p→ −~p

~L = ~r × ~p→ +~L so ~L · ~p→ −~L · ~p (helicity)

Up to 1956, parity was thought to be preserved in all physical
processes – had been verified in gravitational, electromagnetic,
and strong interactions, but not weak interactions (as flagged
by Tsung-Dao Lee and Chen-Ning Yang)

Experimental test done by Chien-Shiung Wu (1957) in beta de-
cay of cryogenic spin-polarized Cobalt-60 nuclei: demonstrated
(maximal!) parity violation in weak interactions!

Discovery also explained how the weak-interaction decays K+ →
π+π0 (P-even) and K+ → π+π+π− (P-odd) can coexist.
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What is CP?

2) Charge conjugation operation (C): swap each particle for its

antiparticle

Weak interactions instead conserve the combined operation of

charge conjugation and parity (CP): exchange each particle for

its antiparticle and also flip all the helicities...

...or so it was thought for an entire 7 years until CP was also

experimentally demonstrated to be (slightly!) violated in weak-

interaction processes!
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CP Violation

CP violation discovered 1964 (Cronin & Fitch) at the Alternating

Gradient Synchrotron at Brookhaven National Lab (New York)

Neutral kaons: KS → ππ CP even (cτ ' 2.7 cm); KL → 3π CP

odd (cτ ' 15 m); but KL also decays to ππ about 0.3% of the

time!

Explained in the Standard Model by 3-generation CKM matrix

(Kobayashi & Maskawa 1973); well-established by measurements at

the “B-factories” BaBar and Belle during the ’00s.
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CP Violation in the Standard Model

CKM matrix V is a 3× 3 unitary matrix that describes the mis-
match between the mass eigenstates of the up-type (charge
+2/3) quarks versus the down-type (charge −1/3) quarks.

Niamh O’C, Wikipedia, CC BY-SA 3.0

Elements of V describe relative

strengths of weak transitions.

Unitary 3 × 3 matrix: can

absorb all but 3 angles and one

complex phase into unphysical

redefinitions of quark fields.

This complex phase is the

source of the CP violation.
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Two Higgs Doublet Model (2HDM)

Add a second “doublet” of Higgs bosons to the one in the SM.

SM:

(
φ+

φ0

)
→ physical Higgs boson h0;

extra bits of massive W±, Z

2HDM:

(
φ+

1
φ0

1

)
,

(
φ+

2
φ0

2

)
→ physical Higgs bosons h0, H0, A0, H±;

extra bits of massive W±, Z

Have to restrict the doublets’ interactions with fermions to avoid
messing up CKM picture; easy to do using an extra symmetry.

Describe Higgs masses & interactions with the Higgs potential:

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
[
m2

12Φ†1Φ2 + h.c.
]

+
1

2
λ1

(
Φ†1Φ1

)2
+

1

2
λ2

(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

) (
Φ†2Φ2

)
+ λ4

∣∣∣Φ†1Φ2

∣∣∣2
+

{
1

2
λ5

(
Φ†1Φ2

)2
+ h.c.

}
.

QM: must be a Hermitian operator!
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Two Higgs Doublet Model (2HDM)

New source of CP violation: relative phase of m2
12 and λ5!

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
[
m2

12Φ†1Φ2 + h.c.
]

+
1

2
λ1

(
Φ†1Φ1

)2
+

1

2
λ2

(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

) (
Φ†2Φ2

)
+ λ4

∣∣∣Φ†1Φ2

∣∣∣2
+

{
1

2
λ5

(
Φ†1Φ2

)2
+ h.c.

}
.

Usual approach: choose m2
12 real; then Im(λ5) contains the CPV;

constrained by electron’s electric dipole moment (upper bound):
|de| < 4.1× 10−30e cm (JILA 2022).

In the 2HDM, this is uncomfortably fine-tuned: even for quite
heavy extra Higgs boson masses M ∼ TeV, imaginary part of λ5
has to be . 10−2 while real part can be O(1).(

1 TeV

M

)2
Im(λ5)× f(sin2 β, cos2 β) . 0.5− 1%

Altmannshofer, Gori, Hamer, & Patel, 2020

Avoid the problem by imposing CP: force m2
12 and λ5 to be real!
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Real Two Higgs Doublet Model (2HDM)

Very nice model; 3–4 decades of theoretical studies and experi-
mental searches

Prototype model for LHC searches for charged Higgs bosons &
additional neutral Higgs bosons, and for model-specific fits of
Higgs coupling measurements

Well-established infrastructure of theoretical computer codes for
calculating spectrum, theoretical & experimental constraints, &
decay predictions, including radiative corrections up to 2 loops

But... is it consistent?
D. Fontes, M. Löschner, J.C. Romão, & J.P. Silva, 2103.05002 (EPJC)

- We know that CP is violated in the weak interactions of quarks.

- Known feature of quantum field theory: such symmetry vio-
lation must eventually propagate to all parts of the theory via
radiative corrections.
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Radiative corrections and renormalization

Interacting quantum field theories can almost never be solved

exactly.

Instead, use perturbation theory to calculate order-by-order in

powers of the interaction coupling.
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Radiative corrections and renormalization

Loop diagrams are computed using Feynman’s “sum over histo-

ries” method: integrate over any momenta that aren’t fixed by

external kinematics, and sum up all contributing diagrams.

Complication: the momentum integrals can be divergent!∫
d4k

1

k2

kµ

k2 −m2

kµ

k2 −m2
∼
∫
d4k

1

k4
∼
∫
dΩ

∫ Λ
k3dk

1

k4
∼ ln Λ→∞

The divergence comes from the high-momentum↔ short-distance

part of the integral.
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Radiative corrections and renormalization

But we don’t measure parameters like e at infinitely short dis-

tances; we measure them “in the lab” (specifically in the “Thom-

son limit” of zero momentum transfer).

→ Re-express the calculation in terms of measurable input pro-

cesses: all the divergences cancel in physical predictions! (theory

is “renormalizable”)

Organize the math by defining e0 = e+ δe:

e0 is the “bare coupling” that appears in the Lagrangian.

e is the “renormalized coupling” that we measure physically.

δe is the “counterterm” that cancels the divergence in calcula-

tions of renormalized predictions.

Finite parts of the calculation are meaningful and can be tested

(e.g. electron g − 2 vs. Rydberg constant: good to 1/108).
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Problem with the Real 2HDM

We get the Real 2HDM by imposing CP invariance on m2
12 and

λ5 (i.e., requiring them to be real): removes a degree of freedom.

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
[
m2

12Φ†1Φ2 + h.c.
]

+
1

2
λ1

(
Φ†1Φ1

)2
+

1

2
λ2

(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

) (
Φ†2Φ2

)
+ λ4

∣∣∣Φ†1Φ2

∣∣∣2
+

{
1

2
λ5

(
Φ†1Φ2

)2
+ h.c.

}
.

If there are divergent radiative corrections to the operators(
Φ†1Φ2

)2
or Φ†1Φ2 with imaginary parts, we are now in big trou-

ble because there is no counterterm available to cancel the di-

vergence!

- Problem first flagged by D. Fontes et al., arXiv:2103.05002, but their
state-of-the-art 3-loop calculation found no imaginary divergent
contribution.
- We demonstrated that imaginary divergent contributions do
show up, but that they first appear at 7 loops.
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Ingredients for CP Violation (& our analysis)

We want to identify the simplest possible diagrams that can

contribute an imaginary divergent correction to
(
Φ†1Φ2

)2
.

First ingredient: need CP violation!

Get it from the known CP violation in the quark mass matrices.
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Ingredients for CP Violation: Jarlskog invariant

Reparameterization-invariant measure of the CP violation in the
CKM matrix Jarlskog, ZPhysC, PRL 1985

J =
∣∣∣Im(VαiVβjV

∗
αjV

∗
βi)
∣∣∣ , (α 6= β, i 6= j)

More useful here to express it in terms of the quark couplings to
the Higgs fields that give rise to the mass matrices.

Define combinations of quark coupling (Yukawa) matrices:

Ĥu = YuY
†
u Ĥd = YdY

†
d

Minimal combination that yields an imaginary part involves 12
powers of Y ’s: Botella & Silva, PRD 1995

J = Tr
(
ĤuĤdĤ

2
uĤ

2
d

)
where Im(J ) ∝ J

⇒ Draw the simplest loop diagrams that involve J or J ∗.

(Focus on “Type I” 2HDM. We also do “Type II” in our paper.)
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12 Yukawa insertions ⇒ 12 scalar “legs”.

Connect 8 incoming and outgoing scalars so

that only 4 “legs” are left: another 4 loops.

⇒ 5 loops total so far.

Type I:

only Φ2 couples to

quarks:

6 incoming Φ2’s

6 outgoing Φ2’s

But want (Φ†1Φ2)2:

need to convert

two outgoing Φ2’s

into Φ1’s!

Can do this by in-

serting a λ5 vertex.

Second ingredient!
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Ingredients for CP Violation: λ5 insertion

The key observation is that because in the type I model
only Φ2 couples to quarks, all six-loop diagrams contrib-
uting to O5 that are proportional to J or J ! have the
structure of a five-loop subdiagramwith two legs connected
to a λ5 vertex, as shown in Fig. 4. All of the dependence of
the six-loop result on J or J ! is thus contained within the
form factor of the five-loop subdiagram. However, this
subdiagram corresponds to the operator O2 ≡Φ†

2Φ2Φ†
2Φ2,

which is dimension four and Hermitian. This fact will allow
us to prove that all relevant parts of the five-loop form
factor must be proportional to J þ J ! and hence real,13 so
that the imaginary divergent contribution to λ5 vanishes at
six loops.
Consider an individual five-loop subdiagram that is

proportional to J ¼ TrðĤuĤdĤ2
uĤ2

dÞ. This subdiagram
can be written as

Mð5Þ
i Oi ¼ fTrðĤuĤdĤ2

uĤ2
dÞTrðγμ1 & & & γμ12ÞN i

μ1&&&μ12g

×Φ†
2ðp1ÞΦ2ðp2ÞΦ†

2ðp3ÞΦ2ðp4Þ; ð4:5Þ

where the SUð2ÞL index structure of the doublets has been
captured in the contractions of the four external scalar
fields. The factor N i

μ1&&&μ12 contains the rest of the loop
integral and is a function of the four-momenta p1&&&4 and the
common auxiliary mass introduced to regulate infrared
divergences. At this stage, the four-momenta of the external
scalars can be off shell.
For each such diagram i, a second diagram i0 exists with

identical topology and momentum structure but in which
the flow of fermion number is reversed. As discussed
in Sec. III, this replaces J with J ! and interchanges
Φ2 ↔ Φ!

2. It also introduces 12 minus signs from pμ →
−pμ in the numerators of the 12 fermion propagators
(giving an overall positive sign) and reverses the order of
the 12 gamma matrices in the Dirac trace (which is equal to
the original trace by a familiar identity). The SUð2ÞL index
contractions remain unaffected. Because the topology and

momentum structure of diagram i0 is identical to that of
diagram i, the result of the remainder of the loop integral is
the same, i.e., N i0

μ1&&&μ12 ¼ N i
μ1&&&μ12 . Subdiagram i0 can then

be written as

Mð5Þ
i0 Oi0 ¼ fTrðĤ2

dĤ
2
uĤdĤuÞð−1Þ12Trðγμ12 & & &γμ1ÞN i0

μ1&&&μ12g
×ΦT

2 ðp1ÞΦ!
2ðp2ÞΦT

2 ðp3ÞΦ!
2ðp4Þ;

¼ fTrðĤuĤdĤ2
uĤ2

dÞ!Trðγμ1 & & &γμ12ÞN i
μ1&&&μ12g

×Φ†
2ðp2ÞΦ2ðp1ÞΦ†

2ðp4ÞΦ2ðp3Þ; ð4:6Þ

where in the last line we have also taken the transpose of the
products of scalar doublets.
The operator involving the external scalars is distin-

guishable from that of diagram i because the momenta are
assigned differently. This matters because the matrix
element associated with this subdiagram is, in general, a
Lorentz-invariant function of the incoming four-momenta
p1, p2, p3, p4; in going to subdiagram i0 we have replaced
the original kinematic variables according to p1 ↔ p2,
p3 ↔ p4. However, since this subdiagram’s superficial
degree of divergence is zero, all of the local divergences
of the five-loop integral are independent of the external
momenta. Therefore the imaginary part of J multiplying
divergent terms in N , as well as any finite terms in N that
is independent of the external momenta, cancels in the sum
of diagrams i and i0. This result can also be proved trivially
by noticing that the five-loop subdiagram in the limit
p1&&&4 → 0 is just the five-loop renormalization of λ2, which
multiplies the Hermitian operator O2 in the scalar potential
and is thus guaranteed to remain real at all orders in
perturbation theory.
This leaves only the momentum-dependent terms in N .

These matter because the five-loop subdiagram has two off-
shell legs (which connect to the λ5 vertex, forming the sixth
loop), and the reversal of fermion flow switches which pair
of legs are off shell, as shown in Fig. 5. If the momentum
dependence of the five-loop subdiagram contains an anti-
symmetric term under the interchange of the choice of
off-shell legs, it could induce a divergent CP-violating
contribution at six loops.14 Fortunately, it is easy to
demonstrate that such a term cannot appear once all
contributions to the five-loop subdiagram are summed.
In the massless theory, the five-loop form factor is

an analytic dimensionless function of Lorentz-invariant
combinations of the external four-momenta. Let us write
p1 ¼ −p3 ¼ ka, p2 ¼ −p4 ¼ kb, where ka and kb are the
momenta of the sixth loop in the left and right diagrams of
Fig. 5, respectively. Then the Mandelstam variables enter-
ing the five-loop form factor are s ¼ 0, t ¼ ðka þ kbÞ2, and

FIG. 4. Subdiagram structure of the six-loop contributions to
O5 in the type I 2HDM. The subdiagram contains the closed
quark loop that yields J or J !.

13That the divergent parts of the five-loop form factor are
purely real can be immediately understood by noticing that they
also constitute the five-loop renormalization of the real coupling
λ2. We address the finite part of the form factor below.

14In the effective operator language, this piece of the five-
loop form factor corresponds to C-odd operators such as
½Φ†

2∂
2Φ2 − ð∂2Φ†

2ÞΦ2(ðΦ†
2Φ2Þ.
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095007-9

⇒ Creates a 6th loop.

Deeper understanding:

The 2HDM with λ5 = 0 has an extra symme-

try which is obeyed by all parts of the theory.

This guarantees that loop diagrams cannot

generate any divergent contributions to λ5,

either real or imaginary. So any such contri-

butions have to “know about” nonzero λ5.

Type I:

only Φ2 couples to

quarks:

6 incoming Φ2’s

6 outgoing Φ2’s

But want (Φ†1Φ2)2:

need to convert

two outgoing Φ2’s

into Φ1’s!

Can do this by in-

serting a λ5 vertex.

Second ingredient!
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Ingredients for CP Violation: λ5 insertion

Have to also consider the complex conjugate diagrams: reverse
the direction of all quark and Φ2 arrows (replaces J with J ∗)
and move the λ5 insertion to the other pair of Φ2 legs.

The only structural difference between these diagrams is that
the injection of momentum flowing in the 6th loop happens in a
different place. Does the imaginary part cancel?

u ¼ ðka − kbÞ2, and any antisymmetric piece generically
takes the form ΛðpiÞ ∼ ðk2a − k2bÞ=fðt; uÞ þ % % %, where
fðt; uÞ is some linear combination of t and u and the
ellipses indicate additional dimensionless terms with higher
powers of momenta in both the numerator and denomi-
nator.15 However, in the limit ka → 0 and kb → 0, the
momentum-dependent piece of the five-loop form factor
must reduce to a well-defined, finite limit corresponding to
the physical process of massless Φ2Φ2 → Φ2Φ2 scattering
at threshold; furthermore if in this limit the form factor is
nonzero, its coefficient cannot be complex because it
becomes a contribution to the renormalization of λ2. The
antisymmetric piece of the form factor described above is
not only finite in this limit, but its sign depends on the order
in which the limits ka → 0 and kb → 0 are taken, which is
clearly unphysical. Thus, we prove that the coefficient of
any such antisymmetric piece must be zero; i.e., that the
momentum-dependent piece of the five-loop form factor
must be symmetric under the interchange of the incoming
and outgoing legs. Therefore, the entire form factor must be
proportional to J þ J & and hence real.
Embedding this form factor into the sixth loop, we thus

demonstrate that all imaginary divergent contributions to λ5
cancel at six loops in the type I model. We emphasize that
this cancellation at six loops is a diagrammatic accident in
the type I model and is not protected by any symmetry that
we have identified; instead, it is due to all contributing
diagrams having the subdiagram structure shown in Fig. 4.

V. λ5 AT SEVEN LOOPS

We showed in the previous section that the imaginary
divergent contributions to λ5 are zero at the six-loop level in
both the type II and type I 2HDMs. We now extend our
analysis to seven loops and show that the arguments used to

demonstrate the cancellation of the six-loop diagrams no
longer hold, so that an imaginary divergent contribution to
λ5 can arise at this order. We explicitly identify the classes
of diagrams that can contribute and the resulting parameter
dependence that can appear in the seven-loop RG equa-
tions, thereby laying the groundwork for future explicit
calculations. Again, we analyze the two types separately.
Since we have not performed the loop integrals to

calculate the divergent parts of the contributing diagrams,
we cannot exclude the possibility that some as-yet-
unidentified symmetry among diagrams leads to cancella-
tions of the imaginary divergent contributions to λ5 also at
the seven-loop order.

A. Type II 2HDM

In Sec. IVAwe demonstrated that the cancellation of the
imaginary divergent contribution to λ5 at six loops in the
type II 2HDM was guaranteed by the transformation
properties of the contributing diagrams under the general-
ized CP transformationΦ1 ↔ Φ̃2 along with uR ↔ dR and
Yu ↔ Yd. In particular, for each six-loop diagram i propor-
tional to λ5J , this transformation yielded a second diagram
i0 with identical momentum structure proportional to λ5J &,
between which the imaginary part of J canceled. The
obvious way to destroy this cancellation and potentially
recover an imaginary divergent contribution to λ5 at the
seven-loop order is by introducing an additional coupling
multiplying λ5J in diagram i that is not the same in
diagram i0. We identify three possible ways to do this:
(1) Insert an additional quartic scalar interaction involv-

ing the coupling λ1 or λ2. Under the generalized CP
transformation Φ1 ↔ Φ̃2, the most general scalar
potential of the 2HDM given in Eq. (2.1) transforms
according to λ1 ↔ λ2, λ6 ↔ λ&7, and m2

11 ↔ m2
22,

with all other terms invariant. Thus a seven-loop
diagram i proportional to λ1λ5J contributing to O5

transforms into a diagram i0 proportional to λ2λ5J &,
and the cancellation of the imaginary part of J is
spoiled when λ1 ≠ λ2. A pair of such seven-loop

FIG. 5. A pair of six-loop diagrams contributing toO5 in the type I 2HDM with Yukawa-vertex corrections on the two incoming (left)
and two outgoing (right) Φ2 legs of the five-loop subdiagram. Note that the internal closed scalar lines in the second diagram cannot be
rearranged to produce a diagram with Yukawa vertex corrections on the incoming legs because of the hypercharge flow.

15Such a structure can arise from individual five-loop diagrams
containing one-loop Yukawa vertex corrections on either the two
incoming or the two outgoing scalar lines but not both; we show
two such diagrams related by reversal of fermion flow in Fig. 5.

CARLOS HENRIQUE DE LIMA and HEATHER E. LOGAN PHYS. REV. D 110, 095007 (2024)

095007-10
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Ingredients for CP Violation: λ5 insertion

Our analysis goes as follows.

- Treat the sum of all 5-loop subdia-

grams proportional to J as a formfac-

tor, which depends on the momenta of

its four legs.

The key observation is that because in the type I model
only Φ2 couples to quarks, all six-loop diagrams contrib-
uting to O5 that are proportional to J or J ! have the
structure of a five-loop subdiagramwith two legs connected
to a λ5 vertex, as shown in Fig. 4. All of the dependence of
the six-loop result on J or J ! is thus contained within the
form factor of the five-loop subdiagram. However, this
subdiagram corresponds to the operator O2 ≡Φ†

2Φ2Φ†
2Φ2,

which is dimension four and Hermitian. This fact will allow
us to prove that all relevant parts of the five-loop form
factor must be proportional to J þ J ! and hence real,13 so
that the imaginary divergent contribution to λ5 vanishes at
six loops.
Consider an individual five-loop subdiagram that is

proportional to J ¼ TrðĤuĤdĤ2
uĤ2

dÞ. This subdiagram
can be written as

Mð5Þ
i Oi ¼ fTrðĤuĤdĤ2

uĤ2
dÞTrðγμ1 & & & γμ12ÞN i

μ1&&&μ12g

×Φ†
2ðp1ÞΦ2ðp2ÞΦ†

2ðp3ÞΦ2ðp4Þ; ð4:5Þ

where the SUð2ÞL index structure of the doublets has been
captured in the contractions of the four external scalar
fields. The factor N i

μ1&&&μ12 contains the rest of the loop
integral and is a function of the four-momenta p1&&&4 and the
common auxiliary mass introduced to regulate infrared
divergences. At this stage, the four-momenta of the external
scalars can be off shell.
For each such diagram i, a second diagram i0 exists with

identical topology and momentum structure but in which
the flow of fermion number is reversed. As discussed
in Sec. III, this replaces J with J ! and interchanges
Φ2 ↔ Φ!

2. It also introduces 12 minus signs from pμ →
−pμ in the numerators of the 12 fermion propagators
(giving an overall positive sign) and reverses the order of
the 12 gamma matrices in the Dirac trace (which is equal to
the original trace by a familiar identity). The SUð2ÞL index
contractions remain unaffected. Because the topology and

momentum structure of diagram i0 is identical to that of
diagram i, the result of the remainder of the loop integral is
the same, i.e., N i0

μ1&&&μ12 ¼ N i
μ1&&&μ12 . Subdiagram i0 can then

be written as

Mð5Þ
i0 Oi0 ¼ fTrðĤ2

dĤ
2
uĤdĤuÞð−1Þ12Trðγμ12 & & &γμ1ÞN i0

μ1&&&μ12g
×ΦT

2 ðp1ÞΦ!
2ðp2ÞΦT

2 ðp3ÞΦ!
2ðp4Þ;

¼ fTrðĤuĤdĤ2
uĤ2

dÞ!Trðγμ1 & & &γμ12ÞN i
μ1&&&μ12g

×Φ†
2ðp2ÞΦ2ðp1ÞΦ†

2ðp4ÞΦ2ðp3Þ; ð4:6Þ

where in the last line we have also taken the transpose of the
products of scalar doublets.
The operator involving the external scalars is distin-

guishable from that of diagram i because the momenta are
assigned differently. This matters because the matrix
element associated with this subdiagram is, in general, a
Lorentz-invariant function of the incoming four-momenta
p1, p2, p3, p4; in going to subdiagram i0 we have replaced
the original kinematic variables according to p1 ↔ p2,
p3 ↔ p4. However, since this subdiagram’s superficial
degree of divergence is zero, all of the local divergences
of the five-loop integral are independent of the external
momenta. Therefore the imaginary part of J multiplying
divergent terms in N , as well as any finite terms in N that
is independent of the external momenta, cancels in the sum
of diagrams i and i0. This result can also be proved trivially
by noticing that the five-loop subdiagram in the limit
p1&&&4 → 0 is just the five-loop renormalization of λ2, which
multiplies the Hermitian operator O2 in the scalar potential
and is thus guaranteed to remain real at all orders in
perturbation theory.
This leaves only the momentum-dependent terms in N .

These matter because the five-loop subdiagram has two off-
shell legs (which connect to the λ5 vertex, forming the sixth
loop), and the reversal of fermion flow switches which pair
of legs are off shell, as shown in Fig. 5. If the momentum
dependence of the five-loop subdiagram contains an anti-
symmetric term under the interchange of the choice of
off-shell legs, it could induce a divergent CP-violating
contribution at six loops.14 Fortunately, it is easy to
demonstrate that such a term cannot appear once all
contributions to the five-loop subdiagram are summed.
In the massless theory, the five-loop form factor is

an analytic dimensionless function of Lorentz-invariant
combinations of the external four-momenta. Let us write
p1 ¼ −p3 ¼ ka, p2 ¼ −p4 ¼ kb, where ka and kb are the
momenta of the sixth loop in the left and right diagrams of
Fig. 5, respectively. Then the Mandelstam variables enter-
ing the five-loop form factor are s ¼ 0, t ¼ ðka þ kbÞ2, and

FIG. 4. Subdiagram structure of the six-loop contributions to
O5 in the type I 2HDM. The subdiagram contains the closed
quark loop that yields J or J !.

13That the divergent parts of the five-loop form factor are
purely real can be immediately understood by noticing that they
also constitute the five-loop renormalization of the real coupling
λ2. We address the finite part of the form factor below.

14In the effective operator language, this piece of the five-
loop form factor corresponds to C-odd operators such as
½Φ†

2∂
2Φ2 − ð∂2Φ†

2ÞΦ2(ðΦ†
2Φ2Þ.

CAN CP BE CONSERVED IN THE TWO-HIGGS-DOUBLET … PHYS. REV. D 110, 095007 (2024)

095007-9

- Any parts of this formfactor that will later contribute to diver-
gences of the 6-loop diagram must be an analytic dimensionless
function of Lorentz-invariant combinations of the momenta of
its four legs.

- If this formfactor has a piece which is antisymmetric when the
relevant momenta are swapped, then the imaginary divergence
will not cancel. Ex: (k2

a − k2
b )/fn(k2

i )

- But an antisymmetric piece of a dimensionless formfactor lacks
a well-defined zero-momentum limit: unphysical, must = 0!
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Ingredients for CP Violation: λ5 insertion

Deeper understanding:
The formfactor for the 5-loop subdiagram is “actually” just the
renormalization of the operator (Φ†2Φ2)2, which is hermitian and
thus cannot acquire an imaginary part (divergent or otherwise)
in the zero-momentum limit.

eight of the 12 scalar legs of either primitive diagram to
produce a four-scalar operator creates a five-loop diagram,
and inserting a λ5 vertex requires one additional loop.
Six- and seven-loop analysis—In order to show that the

real 2HDM is theoretically inconsistent, we need to
demonstrate the existence of a nonzero divergent contri-
bution to Imðλ5Þ. Starting from the two primitive diagrams
of Fig. 1 together with a λ5 vertex, we can construct all
diagrams that contribute to the ðΦ†

1Φ2Þ2 operator by
choosing all relevant configurations of external legs and
connecting the remaining legs in all possible ways.
Calculating the divergences of generic six-loop diagrams

is beyond the reach of current computational tools. We
instead look for pairings of diagrams proportional to J and
J # that give rise to identical divergent contributions so that
the imaginary part cancels in their sum. These pairings are
driven by two transformations that convert the primitive
diagram proportional to J into the one proportional to J #:
these are (i) in the type I model, reversal of the fermion
flow, which forces Φ2 ↔ Φ#

2, and (ii) in the type II model,
interchange of uR ↔ dR, which forces Φ1 ↔ Φ̃2. The first
is the standard CP transformation applied to the entire
primitive diagram; the second corresponds to a generalized
CP transformation [7].
The key observation is that because the coefficient of the

four-scalar operator is dimensionless, the divergent parts of
the diagrams cannot depend on any particle masses or
external momenta. The transformations that take J ↔ J #

are thereby promoted to accidental symmetries of the
divergent parts of the Feynman integrals at six loops, so
that the sum of each such pair of diagrams is proportional to
ðJ þ J #Þ, and hence purely real. Since the additional
accidental symmetry differs in types I and II, we study the
two models separately.
Type I 2HDM In the type I model, only Φ2 is

connected to the fermion line. Since we want to generate
the operator ðΦ†

1Φ2Þ2, we must convert two outgoing Φ2

fields into Φ1 using the λ5 insertion. All of the six-loop
diagrams then have the characteristic topology shown in
Fig. 2, in which it is always possible to cut the two Φ2

propagators connected to the λ5 vertex and thereby isolate a
five-loop subdiagram.
This gives us a clearer picture of the six-loop correction,

as it is possible to integrate and sum all the subdiagrams
first and generate a five-loop form factor before performing

the sixth loop integral. The symmetry transformation
Φ2 ↔ Φ#

2, q → q# (with q ¼ QL; uR; dR) that interchanges
the diagrams proportional to J and J # also interchanges
the incoming and outgoing Φ2 lines of the subdiagram.
This forces the λ5 insertion to be attached instead to the
other pair of legs, changing the momentum structure of the
overall diagram.
The form factor from the five-loop subdiagram can, in

principle, depend nontrivially on which legs carry the
momentum of the sixth loop. However, since any four-
scalar form factor is dimensionless and the theory is
effectively massless for the purpose of computing only
the divergent parts, only the piece of the five-loop form
factor that reduces to a constant in the zero-momentum
limit can contribute. This constant piece must be real
because it constitutes the five-loop renormalization of
the coefficient λ2 of the Hermitian operator ðΦ†

2Φ2Þ2.
This guarantees that the sum of all six-loop diagrams
proportional to J generates the same divergent coefficient
as the sum of all such diagrams proportional to J #, so that
the imaginary part of J cancels in their sum. Finite
imaginary contributions do not necessarily cancel, but they
do not affect the renormalizability of the real 2HDM. We
thus conclude that the type I 2HDM has no divergent CPV
at six loops.
This subdiagram structure is not preserved at seven

loops, and the accidental enhanced symmetry that ensures
the cancelation of the divergent imaginary parts is thus
removed. Diagrams without the subdiagram structure can
be constructed by connecting a propagator between the
original subdiagram and one of the external Φ1 legs, as
shown in Fig. 3. All such diagrams involve one of the
following: (i) a λ3 or λ4 vertex or (ii) a hypercharge or
SUð2ÞL gauge boson exchange.
We thus expect imaginary divergent contributions to λ5

to first appear at the seven-loop level in the type I 2HDM,
with coefficients proportional to λ5ImðJ Þ times these
additional couplings. We have explicitly verified the break-
ing of the subdiagram structure by generating the diagram
topologies involving λ3 or λ4 using QGRAF [28].
We finally note that diagrams contributing radiative

corrections to m2
12 are also guaranteed to take the form

FIG. 2. Subdiagram topology of the six-loop diagrams in the
type I 2HDM.

FIG. 3. Two seven-loop diagrams in the type I 2HDM that
violate the subdiagram topology.

PHYSICAL REVIEW LETTERS 133, 201801 (2024)
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The coefficient of this operator being dimensionless guarantees
that momentum dependence cannot circumvent this conclusion.

We need a third ingredient to break the subdiagram structure.
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Ingredients for CP Violation: Breaking the subdiagram structure

To break the subdiagram structure, have to attach something

to both the 5-loop formfactor and an external Φ1 leg.

⇒ Creates a 7th loop!

eight of the 12 scalar legs of either primitive diagram to
produce a four-scalar operator creates a five-loop diagram,
and inserting a λ5 vertex requires one additional loop.
Six- and seven-loop analysis—In order to show that the

real 2HDM is theoretically inconsistent, we need to
demonstrate the existence of a nonzero divergent contri-
bution to Imðλ5Þ. Starting from the two primitive diagrams
of Fig. 1 together with a λ5 vertex, we can construct all
diagrams that contribute to the ðΦ†

1Φ2Þ2 operator by
choosing all relevant configurations of external legs and
connecting the remaining legs in all possible ways.
Calculating the divergences of generic six-loop diagrams

is beyond the reach of current computational tools. We
instead look for pairings of diagrams proportional to J and
J # that give rise to identical divergent contributions so that
the imaginary part cancels in their sum. These pairings are
driven by two transformations that convert the primitive
diagram proportional to J into the one proportional to J #:
these are (i) in the type I model, reversal of the fermion
flow, which forces Φ2 ↔ Φ#

2, and (ii) in the type II model,
interchange of uR ↔ dR, which forces Φ1 ↔ Φ̃2. The first
is the standard CP transformation applied to the entire
primitive diagram; the second corresponds to a generalized
CP transformation [7].
The key observation is that because the coefficient of the

four-scalar operator is dimensionless, the divergent parts of
the diagrams cannot depend on any particle masses or
external momenta. The transformations that take J ↔ J #

are thereby promoted to accidental symmetries of the
divergent parts of the Feynman integrals at six loops, so
that the sum of each such pair of diagrams is proportional to
ðJ þ J #Þ, and hence purely real. Since the additional
accidental symmetry differs in types I and II, we study the
two models separately.
Type I 2HDM In the type I model, only Φ2 is

connected to the fermion line. Since we want to generate
the operator ðΦ†

1Φ2Þ2, we must convert two outgoing Φ2

fields into Φ1 using the λ5 insertion. All of the six-loop
diagrams then have the characteristic topology shown in
Fig. 2, in which it is always possible to cut the two Φ2

propagators connected to the λ5 vertex and thereby isolate a
five-loop subdiagram.
This gives us a clearer picture of the six-loop correction,

as it is possible to integrate and sum all the subdiagrams
first and generate a five-loop form factor before performing

the sixth loop integral. The symmetry transformation
Φ2 ↔ Φ#

2, q → q# (with q ¼ QL; uR; dR) that interchanges
the diagrams proportional to J and J # also interchanges
the incoming and outgoing Φ2 lines of the subdiagram.
This forces the λ5 insertion to be attached instead to the
other pair of legs, changing the momentum structure of the
overall diagram.
The form factor from the five-loop subdiagram can, in

principle, depend nontrivially on which legs carry the
momentum of the sixth loop. However, since any four-
scalar form factor is dimensionless and the theory is
effectively massless for the purpose of computing only
the divergent parts, only the piece of the five-loop form
factor that reduces to a constant in the zero-momentum
limit can contribute. This constant piece must be real
because it constitutes the five-loop renormalization of
the coefficient λ2 of the Hermitian operator ðΦ†

2Φ2Þ2.
This guarantees that the sum of all six-loop diagrams
proportional to J generates the same divergent coefficient
as the sum of all such diagrams proportional to J #, so that
the imaginary part of J cancels in their sum. Finite
imaginary contributions do not necessarily cancel, but they
do not affect the renormalizability of the real 2HDM. We
thus conclude that the type I 2HDM has no divergent CPV
at six loops.
This subdiagram structure is not preserved at seven

loops, and the accidental enhanced symmetry that ensures
the cancelation of the divergent imaginary parts is thus
removed. Diagrams without the subdiagram structure can
be constructed by connecting a propagator between the
original subdiagram and one of the external Φ1 legs, as
shown in Fig. 3. All such diagrams involve one of the
following: (i) a λ3 or λ4 vertex or (ii) a hypercharge or
SUð2ÞL gauge boson exchange.
We thus expect imaginary divergent contributions to λ5

to first appear at the seven-loop level in the type I 2HDM,
with coefficients proportional to λ5ImðJ Þ times these
additional couplings. We have explicitly verified the break-
ing of the subdiagram structure by generating the diagram
topologies involving λ3 or λ4 using QGRAF [28].
We finally note that diagrams contributing radiative

corrections to m2
12 are also guaranteed to take the form

FIG. 2. Subdiagram topology of the six-loop diagrams in the
type I 2HDM.

FIG. 3. Two seven-loop diagrams in the type I 2HDM that
violate the subdiagram topology.

PHYSICAL REVIEW LETTERS 133, 201801 (2024)

201801-3

Limited possibilities: λ3

(
Φ†1Φ1

) (
Φ†2Φ2

)
or λ4

∣∣∣Φ†1Φ2

∣∣∣2, or an

SU(2) or U(1) gauge boson → Predict the parameter depen-

dence of the imaginary divergence!

Im(J )λ5

{
b1λ3 + b2λ4 + b3g

′2 + b4g
2
}
/(16π2)7
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Practical consequences?

The coefficient of the divergence also controls the energy-scale

dependence of the associated “running” coupling (“renormalization-

group equation”).

Can estimate the size of the imaginary part if one assumes that

it is zero (for some unknown reason) at the scale of quantum

gravity (where particle physicists normally stash our ignorance):

get Im(λ5) ∼ 10−22 (versus Re(λ5) ∼ 1).

So tiny that it has no conceivable effect! Can continue to use

the Real 2HDM... but have to accept that the question of why

Im(λ5) = 0 at the Planck scale is not answered.

Probably better to accept that the 2HDM is more likely to be

complex (and somewhat tuned) than approximately real.
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Conclusions

A principle of quantum field theory (and physics in general):

You can’t truly preserve a symmetry in one part of a theory if it

is violated in another (interacting) part of the theory.

In some cases, the transmitted symmetry violation is small and

calculable (nice).

In others (like the Real 2HDM), the transmitted symmetry vio-

lation is divergent and setting it to be zero “by hand” is totally

artificial.

By carefully following the symmetries, it’s possible to pin down

at what order the divergent symmetry violation occurs and what

parameters it must depend on, even when doing the full calcu-

lation is not technically feasible.
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Invitation
As a university professor, one of my most important responsibilities is mentoring the junior members of my research group and creating an inclusive environment in which they can thrive. Since my
autism diagnosis two years ago, colleagues have asked me how they can make their research groups more welcoming to autistic trainees. This short guide, based on conversations with autistic
students and academics, intense reflection on my own lived experience, and a deep dive into the literature, provides five concrete steps toward this goal.

– Prof. Heather E. Logan, Carleton University, October 2024

1. Dispel your misconceptions
Comprising an estimated 3–4% of the population, autistic people are increasingly recognized
as an essential facet of natural human neurodiversity. Autism becomes a disability when the
social and physical environment is set up solely to accommodate the needs and preferences
of the non-autistic majority. Despite pathologizing narratives, caricatured portrayals in popular
media, and pervasive unconscious bias, most autistic people can and do thrive in a full range of
careers—including academia—when our needs are met.

Autism is genetic and is lifelong. Women are no less likely to be autistic than men are, though
persistent gender bias in referrals results in more than 75% of autistic girls remaining undiag-
nosed by age 18; more than 80% of all autistic adults over age 30 also remain undiagnosed.
Those who do know themselves to be autistic may be reluctant to disclose due to fear of stigma
or of being disbelieved. Establishing an autistic-friendly research environment is thus important
whether or not anyone in your group has disclosed their autism to you.

This begins with recognizing that each person’s needs are unique, and cannot be guessed based
on your prior knowledge or experiences. Proactively building flexibility into your workplace is a
key principle of universal design and benefits multiple groups.

2. Communicate clearly
While autism is often framed as a communication disorder, it is more accurately described as
a mismatch of communication styles. You can bridge the communication divide by applying
cross-cultural communication skills even when you think your trainees share your own culture,
and by adapting your communication style to match that of your trainees as needed. This
benefits not only autistic and other neurodivergent trainees, but also international, first-in-family,
and other equity-seeking students who may be unaware of some aspects of academic culture.
In particular, if you think a trainee is doing good work and should apply for a scholarship, job,
graduate program, or conference, tell them! They may undervalue their accomplishments without
direct feedback.

Be explicit and straightforward in your communications and avoid reliance on metaphors,
colloquialisms, or unspoken messages. Provide critical information in writing so that trainees can
refer to it as needed—for example, shared note-taking documents can boost group productivity
while helping you keep track of trainee progress. Provide direct instruction on research practices
like record-keeping, but allow trainees to adapt their systems to fit their needs. Provide timelines
and context: trainees are less likely to misinterpret instructions when they understand how each
step fits into the bigger picture, leading to enhanced ownership of their contributions and fewer
costly mistakes.

Meet regularly with trainees and be clear about how and when they can contact you. Listen care-
fully and take all questions seriously, especially when the answer seems obvious to you. Autistic
trainees may be afraid to ask for clarification more than once due to prior negative experiences;
make a habit of checking for understanding while recognizing that autistic people may need more
time to process information. Clear communication benefits all researchers!

3. Check the sensory environment
Differences in sensory processing are common in the autistic population. Background noise,
lighting, temperature, smells, textures, and visual distractions can lead to sensory overwhelm
and prevent an autistic trainee from doing their best work. Frequent interruptions, even small
ones, can disrupt autistic thought processes, sapping energy and reducing focus. Unstructured
networking events and crowded poster sessions can be overwhelming to some autistic people;
instead of relying solely on them for recruitment, promote alternative methods such as cen-
tralized departmental publicity for research group openings with clear instructions on how to apply.

Each person’s sensory profile is unique, and autistic people may be unaware that their sensory
experiences differ from others’. Encourage trainees to experiment with different work environ-
ments and identify the conditions under which they function best. Many sensory issues are
easy to accommodate by allowing use of earplugs or adjustable task lighting, adjusting seating
arrangements and social expectations, scheduling quiet breaks between high-intensity activi-
ties such as meetings or social events, establishing explicit turn-taking or alternative contribution
modes (e.g., written) in group meetings, and permitting trainees to work from home or use video-
conferencing when their physical presence on site is not required. Be alert to environments or
situations in which a trainee disengages or becomes distressed, but be aware that the toll of sen-
sory overwhelm may appear only hours after the offending exposure; a trainee missing workdays
may be a sign of problems with the sensory or social environment.

4. Be aware of different cognitive profiles
Autism is fundamentally a different way of thinking. Autistic people often take wildly different
approaches to problems, and notice different details and patterns, than non-autistic people:
embracing this diversity of thought within your research group promotes better decision-making
and more creative approaches to problem-solving. Autistic thought processes tend to be
“bottom-up," collecting details first and then combining them to build a coherent bigger picture.
Facilitate this by providing concrete examples to illustrate abstract concepts and give additional
detail when asked so that trainees can incorporate novel information into their mental schema
before moving on. Autistic people can be “deep divers” when researching a topic: capitalize on
this when appropriate, but provide clear guidance on how much depth and scope is required and
how trainees should prioritize their time expenditures.

Bottom-up thinking requires time and effort: allow sufficient processing time, especially when
trainees are expected to make decisions, and avoid requiring multitasking where possible. Autistic
people tend to do their best work in familiar and predictable environments: unavoidable changes
to schedules, processes, or physical settings should be communicated at least a day in advance,
with an explanation of their necessity, to allow for pre-processing. Provide group meeting agen-
das in advance so that trainees can come prepared. Allow trainees to familiarize themselves in
advance with the location and equipment for high-stakes activities such as presentations or thesis
defences, and encourage them to keep extraneous distractions (such as unfamiliar clothing) to a
minimum during these events. Consider developing a “buddy system” by which group members
can help each other navigate unfamiliar environments during conference travel or fieldwork. Be
aware that autistic people typically have a much more uneven skill-set than the majority: a single
person can be a top performer in some areas while struggling in others.

5. Model inclusivity to your group
Autistic people naturally display different body language, facial expressions, and vocal rhythm and tone than the majority of the population. This leads most non-autistic people to form negative first
impressions and be less likely to pursue interactions with autistic people than with members of their own neurotype. It also leads to frequent misinterpretations of autistic people’s intent and emotional
state, with potentially traumatizing consequences. Most autistic people attempt to mitigate this by effortfully “masking" or camouflaging their autistic traits. Masking consumes a tremendous amount of
cognitive energy and contributes to social isolation, burnout, and mental health problems.

Your trainees will do their best work when they feel safe to be themselves. As leader, you set the tone for your group: model acceptance of physical and vocal autistic traits as well as all other
forms of diversity, and do not tolerate bullying or mockery. Recognize that you hold immense power over your trainees’ futures and do everything you can to identify sources of trainee anxiety and
to reduce or eliminate them. Encourage group social relations but avoid imposing forced socialization; autistic sociality can look very different from non-autistic norms. Model direct, straightforward,
non-judgemental communication: state your feelings, and ask for clarification rather than making assumptions about others’ emotional states. Actively structure your training environment to leverage
each trainee’s strengths while accommodating their weaknesses, and establish a clear and easily-navigated process for implementing accommodations for co-occurring disabilities. Critically examine
your “best practices” to ensure that they really are “best” for everyone.

A footnote on language
Throughout this guide I have used identity-first language (“autistic person”) because it is overwhelmingly preferred by autistic adults. When speaking to an autistic person, ask them what their own
personal terminology preference is, and use it.
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BACKUP SLIDES
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CP Violation

CP violation discovered 1964 (Cronin & Fitch) at the Alternating
Gradient Synchrotron at Brookhaven National Lab (New York)

Neutral kaons: KS → ππ CP even (cτ ' 2.7 cm); KL → 3π CP
odd (cτ ' 15 m); but KL also decays to ππ about 0.3% of the
time!

Explained in the Standard Model by 3-generation CKM matrix
(Kobayashi & Maskawa 1973); quantitatively established by the “B-
factories” BaBar and Belle during the ’00s.

CPV is one of the key ingredients needed to dynamically give
rise to the baryon asymmetry of the universe (Sakharov 1967), but
there’s not enough CPV in the SM to achieve observed asym-
metry. → Beyond-the-SM sources? Most new sources of CPV
are severely constrained by limits on electric dipole moments
(EDMs) of electron and various nuclei: have to be careful.
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Ingredients for CP Violation: λ5 insertion

But is this enough?

Have to also consider the contribution of the complex conjugate
diagrams: reverse the direction of all quark and Φ2 arrows (this
replaces J with J ∗) and move the λ5 insertion to the other pair
of Φ2 legs. E.g.:

u ¼ ðka − kbÞ2, and any antisymmetric piece generically
takes the form ΛðpiÞ ∼ ðk2a − k2bÞ=fðt; uÞ þ % % %, where
fðt; uÞ is some linear combination of t and u and the
ellipses indicate additional dimensionless terms with higher
powers of momenta in both the numerator and denomi-
nator.15 However, in the limit ka → 0 and kb → 0, the
momentum-dependent piece of the five-loop form factor
must reduce to a well-defined, finite limit corresponding to
the physical process of massless Φ2Φ2 → Φ2Φ2 scattering
at threshold; furthermore if in this limit the form factor is
nonzero, its coefficient cannot be complex because it
becomes a contribution to the renormalization of λ2. The
antisymmetric piece of the form factor described above is
not only finite in this limit, but its sign depends on the order
in which the limits ka → 0 and kb → 0 are taken, which is
clearly unphysical. Thus, we prove that the coefficient of
any such antisymmetric piece must be zero; i.e., that the
momentum-dependent piece of the five-loop form factor
must be symmetric under the interchange of the incoming
and outgoing legs. Therefore, the entire form factor must be
proportional to J þ J & and hence real.
Embedding this form factor into the sixth loop, we thus

demonstrate that all imaginary divergent contributions to λ5
cancel at six loops in the type I model. We emphasize that
this cancellation at six loops is a diagrammatic accident in
the type I model and is not protected by any symmetry that
we have identified; instead, it is due to all contributing
diagrams having the subdiagram structure shown in Fig. 4.

V. λ5 AT SEVEN LOOPS

We showed in the previous section that the imaginary
divergent contributions to λ5 are zero at the six-loop level in
both the type II and type I 2HDMs. We now extend our
analysis to seven loops and show that the arguments used to

demonstrate the cancellation of the six-loop diagrams no
longer hold, so that an imaginary divergent contribution to
λ5 can arise at this order. We explicitly identify the classes
of diagrams that can contribute and the resulting parameter
dependence that can appear in the seven-loop RG equa-
tions, thereby laying the groundwork for future explicit
calculations. Again, we analyze the two types separately.
Since we have not performed the loop integrals to

calculate the divergent parts of the contributing diagrams,
we cannot exclude the possibility that some as-yet-
unidentified symmetry among diagrams leads to cancella-
tions of the imaginary divergent contributions to λ5 also at
the seven-loop order.

A. Type II 2HDM

In Sec. IVAwe demonstrated that the cancellation of the
imaginary divergent contribution to λ5 at six loops in the
type II 2HDM was guaranteed by the transformation
properties of the contributing diagrams under the general-
ized CP transformationΦ1 ↔ Φ̃2 along with uR ↔ dR and
Yu ↔ Yd. In particular, for each six-loop diagram i propor-
tional to λ5J , this transformation yielded a second diagram
i0 with identical momentum structure proportional to λ5J &,
between which the imaginary part of J canceled. The
obvious way to destroy this cancellation and potentially
recover an imaginary divergent contribution to λ5 at the
seven-loop order is by introducing an additional coupling
multiplying λ5J in diagram i that is not the same in
diagram i0. We identify three possible ways to do this:
(1) Insert an additional quartic scalar interaction involv-

ing the coupling λ1 or λ2. Under the generalized CP
transformation Φ1 ↔ Φ̃2, the most general scalar
potential of the 2HDM given in Eq. (2.1) transforms
according to λ1 ↔ λ2, λ6 ↔ λ&7, and m2

11 ↔ m2
22,

with all other terms invariant. Thus a seven-loop
diagram i proportional to λ1λ5J contributing to O5

transforms into a diagram i0 proportional to λ2λ5J &,
and the cancellation of the imaginary part of J is
spoiled when λ1 ≠ λ2. A pair of such seven-loop

FIG. 5. A pair of six-loop diagrams contributing toO5 in the type I 2HDM with Yukawa-vertex corrections on the two incoming (left)
and two outgoing (right) Φ2 legs of the five-loop subdiagram. Note that the internal closed scalar lines in the second diagram cannot be
rearranged to produce a diagram with Yukawa vertex corrections on the incoming legs because of the hypercharge flow.

15Such a structure can arise from individual five-loop diagrams
containing one-loop Yukawa vertex corrections on either the two
incoming or the two outgoing scalar lines but not both; we show
two such diagrams related by reversal of fermion flow in Fig. 5.

CARLOS HENRIQUE DE LIMA and HEATHER E. LOGAN PHYS. REV. D 110, 095007 (2024)

095007-10
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Ingredients for CP Violation: λ5 insertion

If each such pair of diagrams give an identical divergent con-
tribution, then the imaginary part cancels in their sum: no CP
violation!

The only structural difference between these diagrams is that
the injection of momentum flowing in the 6th loop happens in a
different place. How to get a handle on this?

u ¼ ðka − kbÞ2, and any antisymmetric piece generically
takes the form ΛðpiÞ ∼ ðk2a − k2bÞ=fðt; uÞ þ % % %, where
fðt; uÞ is some linear combination of t and u and the
ellipses indicate additional dimensionless terms with higher
powers of momenta in both the numerator and denomi-
nator.15 However, in the limit ka → 0 and kb → 0, the
momentum-dependent piece of the five-loop form factor
must reduce to a well-defined, finite limit corresponding to
the physical process of massless Φ2Φ2 → Φ2Φ2 scattering
at threshold; furthermore if in this limit the form factor is
nonzero, its coefficient cannot be complex because it
becomes a contribution to the renormalization of λ2. The
antisymmetric piece of the form factor described above is
not only finite in this limit, but its sign depends on the order
in which the limits ka → 0 and kb → 0 are taken, which is
clearly unphysical. Thus, we prove that the coefficient of
any such antisymmetric piece must be zero; i.e., that the
momentum-dependent piece of the five-loop form factor
must be symmetric under the interchange of the incoming
and outgoing legs. Therefore, the entire form factor must be
proportional to J þ J & and hence real.
Embedding this form factor into the sixth loop, we thus

demonstrate that all imaginary divergent contributions to λ5
cancel at six loops in the type I model. We emphasize that
this cancellation at six loops is a diagrammatic accident in
the type I model and is not protected by any symmetry that
we have identified; instead, it is due to all contributing
diagrams having the subdiagram structure shown in Fig. 4.

V. λ5 AT SEVEN LOOPS

We showed in the previous section that the imaginary
divergent contributions to λ5 are zero at the six-loop level in
both the type II and type I 2HDMs. We now extend our
analysis to seven loops and show that the arguments used to

demonstrate the cancellation of the six-loop diagrams no
longer hold, so that an imaginary divergent contribution to
λ5 can arise at this order. We explicitly identify the classes
of diagrams that can contribute and the resulting parameter
dependence that can appear in the seven-loop RG equa-
tions, thereby laying the groundwork for future explicit
calculations. Again, we analyze the two types separately.
Since we have not performed the loop integrals to

calculate the divergent parts of the contributing diagrams,
we cannot exclude the possibility that some as-yet-
unidentified symmetry among diagrams leads to cancella-
tions of the imaginary divergent contributions to λ5 also at
the seven-loop order.

A. Type II 2HDM

In Sec. IVAwe demonstrated that the cancellation of the
imaginary divergent contribution to λ5 at six loops in the
type II 2HDM was guaranteed by the transformation
properties of the contributing diagrams under the general-
ized CP transformationΦ1 ↔ Φ̃2 along with uR ↔ dR and
Yu ↔ Yd. In particular, for each six-loop diagram i propor-
tional to λ5J , this transformation yielded a second diagram
i0 with identical momentum structure proportional to λ5J &,
between which the imaginary part of J canceled. The
obvious way to destroy this cancellation and potentially
recover an imaginary divergent contribution to λ5 at the
seven-loop order is by introducing an additional coupling
multiplying λ5J in diagram i that is not the same in
diagram i0. We identify three possible ways to do this:
(1) Insert an additional quartic scalar interaction involv-

ing the coupling λ1 or λ2. Under the generalized CP
transformation Φ1 ↔ Φ̃2, the most general scalar
potential of the 2HDM given in Eq. (2.1) transforms
according to λ1 ↔ λ2, λ6 ↔ λ&7, and m2

11 ↔ m2
22,

with all other terms invariant. Thus a seven-loop
diagram i proportional to λ1λ5J contributing to O5

transforms into a diagram i0 proportional to λ2λ5J &,
and the cancellation of the imaginary part of J is
spoiled when λ1 ≠ λ2. A pair of such seven-loop

FIG. 5. A pair of six-loop diagrams contributing toO5 in the type I 2HDM with Yukawa-vertex corrections on the two incoming (left)
and two outgoing (right) Φ2 legs of the five-loop subdiagram. Note that the internal closed scalar lines in the second diagram cannot be
rearranged to produce a diagram with Yukawa vertex corrections on the incoming legs because of the hypercharge flow.

15Such a structure can arise from individual five-loop diagrams
containing one-loop Yukawa vertex corrections on either the two
incoming or the two outgoing scalar lines but not both; we show
two such diagrams related by reversal of fermion flow in Fig. 5.
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Introduction

In the SM Lagrangian there are very few “opportunities” for CP

violation: need operators that are not self-Hermitian.

- The quark mixing matrix VCKM: 2× 2 not enough (phases can

all be rotated away by field redefinitions); in 3 × 3 one physical

CPV phase remains→ original motivation for 3 quark generations

- GµνG̃µν operator (strong interaction): Strong CP problem –

coefficient of this operator constrained by neutron EDM to be

< 10−10. Very fine tuned! → most popular solution is Peccei-

Quinn axion; beyond the scope of this talk.

- Massive neutrinos (technically BSM): 3× 3 lepton mixing ma-

trix (PMNS) has its own CPV phase; also possibility for two

additional Majorana phases.
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Introduction

Beyond the SM, any term in the Lagrangian that is not self-

Hermitian is a new possible source of CP violation.

L ⊃
{
CiOi + C∗iO

†
i

}
+ opportunity to explain baryon asymmetry of the universe!

− generally strongly constrained by EDMs → fine-tuning

→ Consider the two Higgs doublet model (2HDM)
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Introduction

The most general gauge-invariant scalar potential for the 2HDM:

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
[
m2

12Φ†1Φ2 + h.c.
]

+
1

2
λ1

(
Φ†1Φ1

)2
+

1

2
λ2

(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

) (
Φ†2Φ2

)
+ λ4

∣∣∣Φ†1Φ2

∣∣∣2
+

{
1

2
λ5

(
Φ†1Φ2

)2
+
[
λ6

(
Φ†1Φ1

)
+ λ7

(
Φ†2Φ2

)] (
Φ†1Φ2

)
+ h.c.

}

(10 parameters, 4 of them complex)

Yukawa Lagrangian: two copies of that of the SM:

LY uk = −Y d1
ij Q̄LiΦ1dRj − Y u1

ij Q̄LiΦ̃1uRj − Y `1ij L̄LiΦ1eRj + h.c.

−Y d2
ij Q̄LiΦ2dRj − Y u2

ij Q̄LiΦ̃2uRj − Y `2ij L̄LiΦ2eRj + h.c.

Rotating to the fermion mass basis diagonalizes only the combi-
nations (Y u1v1 + Y u2v2), etc.; orthogonal combinations are not
diagonal, source of FCNC and additional CPV.
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Introduction

Sidestep the FCNC problem by imposing Natural Flavour Con-
servation (Glashow & Weinberg, 1977): Arrange for fermions of each
different electric charge to couple to exactly one Higgs doublet.

Easy to impose using a Z2 symmetry: Φ1 → −Φ1, Φ2 → Φ2

uR dR eR
Type I + + +
Type II + − −
Type X + + −
Type Y + − +

Also eliminates λ6, λ7, and m2
12; can then absorb phase of λ5

into unphysical rephasing of fields. No CPV in scalar potential!

Exact Z2: trade m2
11 and m2

22 for Higgs vevs after EWSB; upper
bound on all scalar masses ∼ O(700 GeV). Types II, X, and
Y fully excluded by global fit including LHC data (Chowdhury &

Eberhardt, 2017)
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Motivation

Fontes et al.’s argument:

- We know there is CP violation in the CKM matrix.

- CKM CPV can be transmitted to other operators via loop dia-
grams – e.g., contribution to Weinberg operator fabcG̃aαβG

b
βµG

c
µα

in the SM has been computed at 3 loops (Pospelov 1994)

442 M.E. Pospelov /Physics Letters B 328 (1994) 441-449 

was introduced originally by Weinberg [ 1 ]. In different classes of models violating CP-symmetry this operator 
may give an important contribution to the neutron electric dipole moment [2,3]. 

The violation of CP-symmetry in the Standard Model originates from the complexity of the KM matrix. To 
lowest, quadratic order in the weak interaction all CP-odd flavour-conserving amplitudes turn to zero trivially. 
The point is that in this approximation those amplitudes depend only on the moduli squared of elements of the 
KM matrix, so the result cannot contain the CP-violating phase. 

CP-odd objects may arise in the Standard Model in the fourth order in semi-weak constant. However, the 
cancellation of EDMs of the quark and the W-boson in this approximation is firmly established now [4,5]. The 
only known non-vanishing formfactor to this approximation is the magnetic quadrupole moment of the W-boson 
[6]. The finite EDMs can be obtained only after hard gluon radiative corrections are taken into account. We 
shall prove that in the absence of QCD radiative corrections the same mechanism leads to the cancellation of 
induced 0-term. Contrary to the recent claim that the Weinberg operator is zero in this approximation [7], we 
find that all operators of dim > 6 acquire non-vanishing values. 

2. The Schwinger operator method for calculating the CP-odd Lagrangian 

We are going over now to the direct calculation of a few first terms of the CP-odd effective gluonic 
Lagrangian in the Standard Model in the three-loop approximation. The general structure of the diagrams which 
could contribute to the effect in that approximation is 

(l l) 
where the solid line represents a quark loop, and the wavy lines the W-bosons. 

The CP-odd part of the loop flavour structure reads: 

2i~[ d(  c( b - s ) t  - t(  b - s ) c  + t(  b - s )u  - u( b - s ) t  + u( b - s ) c  - c( b - s )u )  

+ s ( c ( d -  b ) t  - t ( b -  s ) c  + t ( d  - b ) u -  u ( d -  b ) t  + u ( d -  b ) c -  c ( d -  b )u )  

+ b ( c ( s -  d ) t -  t ( s -  d ) c  + t ( s -  d ) u -  u ( s -  d ) t  + u ( s -  d ) c -  c ( s -  d ) u ) ] .  (2) 

For the KM matrix we use the standard parameterization of Ref. [8] where the CP-odd invariant is 

= sin ~cl c2c3 s~s2 s3. (3)  

The letters u, d, s, c, b, t denote here the Green's functions of the corresponding quarks. Each product of 
four quark propagators allows for cyclic permutations of the kind 

udcs = dcsu = esud = sudc. 

Further considerations are based on the operator Schwinger method [9] successfully extended to the QCD 
case by Novicov, Shifman, Vainshtein and Zhakharov [ 10]. It allows one to minimize the set of calculations 
in introducing the operator/5: 

1 c c (xl/51y) = (x]iDly) =y/~( i  + g ~ a  A u ( x ) ) ~ 4 ( x - y ) ,  (4) 

where ACu(x) is the external gluonic field. Then the quark propagator taken in the background gluonic field 
reads: 

- No apparent reason why similar diagrams shouldn’t generate
imaginary parts for the operators multiplying m2

12 and λ5

- CKM phase is hard-breaking of CP, so no apparent reason why
those generated imaginary parts shouldn’t be divergent
→ need complex 2HDM from the beginning to have the necessary
imaginary counterterms!
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Motivation

Fontes et al.’s calculation:

Computed leading (1/ε)3-divergent piece of A0 tadpole diagram
at 3 loops. (Most divergent piece → 3-loop counterterm)

- Minimum number of loops required to get the Jarlskog invariant
(4 powers of CKM matrix) ∼ Im(VαiVβjV

∗
αjV

∗
βi) [more on this later]

- At the very limit of modern Feynman-diagram computational
technology

- Individual contributions are nonzero

- After summing over all 3 generations of up- and down-quark
masses, the result is ZERO!?!

This talk → (1) Why is it zero? (2) Can we dig deeper?

Heather Logan (Carleton U.) CPV leaks into 2HDM OCIP Symposium, Dec 2024

34



The Jarlskog invariant

Reparameterization-invariant measure of the CP violation in the

CKM matrix, introduced by Cecilia Jarlskog in 1985

J =
∣∣∣Im(VαiVβjV

∗
αjV

∗
βi)
∣∣∣ , (α 6= β, i 6= j)

- unaffected by moving phases around in V

- related to the area of the unitarity triangles in B-physics

Before EWSB, all the CPV in the SM CKM sector can be con-

sidered to live in the 3 × 3 Yukawa matrices Yu, Yd. Define the

Hermitian combinations:

Hu =
v2

2
YuY

†
u = UuLM

2
UU
†
uL

Hd =
v2

2
YdY

†
d = UdLM

2
DU
†
dL

(CKM matrix is V ≡ U†uLUdL)
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The Jarlskog invariant

Can then define another Jarlskog quantity, (Botella & Silva, 1995)

J̄ = Im
{

Tr
(
HuHdH

2
uH

2
d

)}
= Im

{
Tr

(
V †M2

UVM
2
DV
†M4

UVM
4
D

)}
= T (M2

U)B(M2
D) J,

where

T (M2
U) = (m2

t −m2
c )(m2

t −m2
u)(m2

c −m2
u),

B(M2
D) = (m2

b −m
2
s)(m2

b −m
2
d)(m2

s −m2
d).

Things to notice:

- Hu, Hd are Hermitian: Tr(HuHdHuHd) would be real because
of cyclic property of the trace. Need a different exponent on the
1st and 2nd Hu’s, and likewise Hd’s, to get an imaginary part.

- J always comes with (at least) 6 powers of up-quark masses
and 6 powers of down-quark masses (i.e., 12 Yukawa insertions).
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Type I:

6 incoming Φ2’s

6 outgoing Φ2’s

Type II:

3 incoming Φ1’s

3 outgoing Φ1’s

3 incoming Φ2’s

3 outgoing Φ2’s

O5 is (Φ†1Φ2)2:

need to convert

e.g. two outgoing

Φ2’s into Φ1’s!

Can do this by in-

serting a λ5 vertex.

Novel ingredient!
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Symmetries of the 2HDM and the role of λ5

Consider again the quark Yukawa couplings after imposing Nat-
ural Flavour Conservation:

LY uk = −Y dijQ̄LiΦ1dRj − Y uijQ̄LiΦ̃2uRj + h.c.

(for Type II; replace Φ1 with Φ2 for Type I.)

We normally enforce this by imposing a Z2 symmetry.

But we could equally well have achieved this form for the Yukawa
couplings by imposing a global U(1) symmetry, e.g.:

Φ1 → e−iθΦ1, Φ2 → eiθΦ2

with QL invariant and

uR → eiθuR, dR → e−iθdR (Type I)

uR → eiθuR, dR → eiθdR (Type II)

(For Type II, this is equivalent to the Peccei-Quinn U(1).)
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Symmetries of the 2HDM and the role of λ5

Most general scalar potential:

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
[
m2

12Φ†1Φ2 + h.c.
]

+
1

2
λ1

(
Φ†1Φ1

)2
+

1

2
λ2

(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

) (
Φ†2Φ2

)
+ λ4

∣∣∣Φ†1Φ2

∣∣∣2
+

{
1

2
λ5

(
Φ†1Φ2

)2
+
[
λ6

(
Φ†1Φ1

)
+ λ7

(
Φ†2Φ2

)] (
Φ†1Φ2

)
+ h.c.

}
.

Imposing U(1)PQ kills off m2
12, λ6, λ7, and λ5!

U(1)PQ can’t be exact or A0 is massless (physical Goldstone
boson of the spontaneous breaking of the extra U(1)).

Softly break U(1)PQ: reinstate m2
12. Complex, but its phase can

be trivially rotated away using the U(1)PQ.

Then the scalar potential has no possible CPV terms.
Protected by a softly-broken symmetry: radiative corrections
cannot generate a divergent Im(λ5) (or even Re(λ5)).
(Finite & calculable radiatively-generated Im(λ5) is ok.)
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Symmetries of the 2HDM and the role of λ5

Corollary 1: any diagrams in the softly-broken-Z2 2HDM that
could generate a divergent Im(λ5) must know about λ5 6= 0,
or they will be equivalent to the corresponding diagrams in the
softly-broken-U(1)PQ 2HDM and the divergent parts will sum to
zero.

→ Require a λ5 insertion in the diagrams!

Unbroken phase: convert two outgoing Φ2’s into Φ1’s. Minimum
of 6 loops!

Broken phase: must show up via triple- or quartic-Higgs cou-
plings that still depend on λ5 after all other quartic couplings are
re-expressed in terms of masses and mixing angles.

8 Lagrangian parameters:

m2
11, m2

22, m2
12, and 5 λ’s

7 + 1 physical parameters:

mh, mH, mA, mH+, v, α, β, λ5
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Symmetries of the 2HDM and the role of λ5

Corollary 2: If one wants a real 2HDM that is guaranteed in an

obvious way to be safe from CPV “leaks” (and hence theoreti-

cally consistent), use the softly-broken-U(1)PQ 2HDM.

- Freedom of scalar masses and mixing angles is identical to that

in softly-broken-Z2 model. (Still fully viable phenomenologically.)

- One coupling degree of freedom is removed from triple- and

quartic-scalar couplings: U(1)PQ model is more predictive (less

general) than Z2 version, but the differences are experimentally

rather subtle.

λ5 freedom shows up in h0H+H− coupling: U(1)PQ restricts the

charged Higgs contribution to h0 → γγ.
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Ingredients for CP Violation: λ5 insertion

The key observation is that because in the type I model
only Φ2 couples to quarks, all six-loop diagrams contrib-
uting to O5 that are proportional to J or J ! have the
structure of a five-loop subdiagramwith two legs connected
to a λ5 vertex, as shown in Fig. 4. All of the dependence of
the six-loop result on J or J ! is thus contained within the
form factor of the five-loop subdiagram. However, this
subdiagram corresponds to the operator O2 ≡Φ†

2Φ2Φ†
2Φ2,

which is dimension four and Hermitian. This fact will allow
us to prove that all relevant parts of the five-loop form
factor must be proportional to J þ J ! and hence real,13 so
that the imaginary divergent contribution to λ5 vanishes at
six loops.
Consider an individual five-loop subdiagram that is

proportional to J ¼ TrðĤuĤdĤ2
uĤ2

dÞ. This subdiagram
can be written as

Mð5Þ
i Oi ¼ fTrðĤuĤdĤ2

uĤ2
dÞTrðγμ1 & & & γμ12ÞN i

μ1&&&μ12g

×Φ†
2ðp1ÞΦ2ðp2ÞΦ†

2ðp3ÞΦ2ðp4Þ; ð4:5Þ

where the SUð2ÞL index structure of the doublets has been
captured in the contractions of the four external scalar
fields. The factor N i

μ1&&&μ12 contains the rest of the loop
integral and is a function of the four-momenta p1&&&4 and the
common auxiliary mass introduced to regulate infrared
divergences. At this stage, the four-momenta of the external
scalars can be off shell.
For each such diagram i, a second diagram i0 exists with

identical topology and momentum structure but in which
the flow of fermion number is reversed. As discussed
in Sec. III, this replaces J with J ! and interchanges
Φ2 ↔ Φ!

2. It also introduces 12 minus signs from pμ →
−pμ in the numerators of the 12 fermion propagators
(giving an overall positive sign) and reverses the order of
the 12 gamma matrices in the Dirac trace (which is equal to
the original trace by a familiar identity). The SUð2ÞL index
contractions remain unaffected. Because the topology and

momentum structure of diagram i0 is identical to that of
diagram i, the result of the remainder of the loop integral is
the same, i.e., N i0

μ1&&&μ12 ¼ N i
μ1&&&μ12 . Subdiagram i0 can then

be written as

Mð5Þ
i0 Oi0 ¼ fTrðĤ2

dĤ
2
uĤdĤuÞð−1Þ12Trðγμ12 & & &γμ1ÞN i0

μ1&&&μ12g
×ΦT

2 ðp1ÞΦ!
2ðp2ÞΦT

2 ðp3ÞΦ!
2ðp4Þ;

¼ fTrðĤuĤdĤ2
uĤ2

dÞ!Trðγμ1 & & &γμ12ÞN i
μ1&&&μ12g

×Φ†
2ðp2ÞΦ2ðp1ÞΦ†

2ðp4ÞΦ2ðp3Þ; ð4:6Þ

where in the last line we have also taken the transpose of the
products of scalar doublets.
The operator involving the external scalars is distin-

guishable from that of diagram i because the momenta are
assigned differently. This matters because the matrix
element associated with this subdiagram is, in general, a
Lorentz-invariant function of the incoming four-momenta
p1, p2, p3, p4; in going to subdiagram i0 we have replaced
the original kinematic variables according to p1 ↔ p2,
p3 ↔ p4. However, since this subdiagram’s superficial
degree of divergence is zero, all of the local divergences
of the five-loop integral are independent of the external
momenta. Therefore the imaginary part of J multiplying
divergent terms in N , as well as any finite terms in N that
is independent of the external momenta, cancels in the sum
of diagrams i and i0. This result can also be proved trivially
by noticing that the five-loop subdiagram in the limit
p1&&&4 → 0 is just the five-loop renormalization of λ2, which
multiplies the Hermitian operator O2 in the scalar potential
and is thus guaranteed to remain real at all orders in
perturbation theory.
This leaves only the momentum-dependent terms in N .

These matter because the five-loop subdiagram has two off-
shell legs (which connect to the λ5 vertex, forming the sixth
loop), and the reversal of fermion flow switches which pair
of legs are off shell, as shown in Fig. 5. If the momentum
dependence of the five-loop subdiagram contains an anti-
symmetric term under the interchange of the choice of
off-shell legs, it could induce a divergent CP-violating
contribution at six loops.14 Fortunately, it is easy to
demonstrate that such a term cannot appear once all
contributions to the five-loop subdiagram are summed.
In the massless theory, the five-loop form factor is

an analytic dimensionless function of Lorentz-invariant
combinations of the external four-momenta. Let us write
p1 ¼ −p3 ¼ ka, p2 ¼ −p4 ¼ kb, where ka and kb are the
momenta of the sixth loop in the left and right diagrams of
Fig. 5, respectively. Then the Mandelstam variables enter-
ing the five-loop form factor are s ¼ 0, t ¼ ðka þ kbÞ2, and

FIG. 4. Subdiagram structure of the six-loop contributions to
O5 in the type I 2HDM. The subdiagram contains the closed
quark loop that yields J or J !.

13That the divergent parts of the five-loop form factor are
purely real can be immediately understood by noticing that they
also constitute the five-loop renormalization of the real coupling
λ2. We address the finite part of the form factor below.

14In the effective operator language, this piece of the five-
loop form factor corresponds to C-odd operators such as
½Φ†

2∂
2Φ2 − ð∂2Φ†

2ÞΦ2(ðΦ†
2Φ2Þ.

CAN CP BE CONSERVED IN THE TWO-HIGGS-DOUBLET … PHYS. REV. D 110, 095007 (2024)

095007-9

⇒ Creates a 6th loop.

But is this enough?

Have to also consider the contribution of the

complex conjugate diagram: replace J with

J ∗, reverse the direction of all Φ2 arrows, and

move the λ5 insertion to the left-hand pair of

Φ2 legs.

Type I:

only Φ2 couples to

quarks:

6 incoming Φ2’s

6 outgoing Φ2’s

But want (Φ†1Φ2)2:

need to convert

two outgoing Φ2’s

into Φ1’s!

Can do this by in-

serting a λ5 vertex.

Second ingredient!

Heather Logan (Carleton U.) CPV leaks into 2HDM OCIP Symposium, Dec 2024

42



Equity/Diversity/Inclusion Advertisement: arXiv:2410.17929

HOW TO MAKE YOUR RESEARCH GROUP
MORE INCLUSIVE FOR AUTISTIC TRAINEES

ACKNOWLEDGEMENTS:

I thank my friends and colleagues who have contributed their perspectives and feedback during the development of this
guide, including Luke Beardon, Adrian Chan, Sarah Finn, Lorna Jarrett, Christine A. Jenkins, Ira Kraemer, Tess LeBlanc, Cathy
Malcolm Edwards, Keivan Stassun, Daniel Stolarski, Rowan Thomson, and Brandon G. Villalta Lopez. This guide was written
on the traditional and unceded territory of the Algonquin Anishinabeg people.

The author received no funding in support of this work.

FOR A FULL-TEXT PDF WITH REFERENCES:

Heather E. Logan
Physics Department
Carleton University
Ottawa, ON K1S 5B6 CANADA

logan@physics.carleton.ca

https://arxiv.org/abs/2410.17929 CC BY-NC-SA 4.0

Invitation
As a university professor, one of my most important responsibilities is mentoring the junior members of my research group and creating an inclusive environment in which they can thrive. Since my
autism diagnosis two years ago, colleagues have asked me how they can make their research groups more welcoming to autistic trainees. This short guide, based on conversations with autistic
students and academics, intense reflection on my own lived experience, and a deep dive into the literature, provides five concrete steps toward this goal.

– Prof. Heather E. Logan, Carleton University, October 2024

1. Dispel your misconceptions
Comprising an estimated 3–4% of the population, autistic people are increasingly recognized
as an essential facet of natural human neurodiversity. Autism becomes a disability when the
social and physical environment is set up solely to accommodate the needs and preferences
of the non-autistic majority. Despite pathologizing narratives, caricatured portrayals in popular
media, and pervasive unconscious bias, most autistic people can and do thrive in a full range of
careers—including academia—when our needs are met.

Autism is genetic and is lifelong. Women are no less likely to be autistic than men are, though
persistent gender bias in referrals results in more than 75% of autistic girls remaining undiag-
nosed by age 18; more than 80% of all autistic adults over age 30 also remain undiagnosed.
Those who do know themselves to be autistic may be reluctant to disclose due to fear of stigma
or of being disbelieved. Establishing an autistic-friendly research environment is thus important
whether or not anyone in your group has disclosed their autism to you.

This begins with recognizing that each person’s needs are unique, and cannot be guessed based
on your prior knowledge or experiences. Proactively building flexibility into your workplace is a
key principle of universal design and benefits multiple groups.

2. Communicate clearly
While autism is often framed as a communication disorder, it is more accurately described as
a mismatch of communication styles. You can bridge the communication divide by applying
cross-cultural communication skills even when you think your trainees share your own culture,
and by adapting your communication style to match that of your trainees as needed. This
benefits not only autistic and other neurodivergent trainees, but also international, first-in-family,
and other equity-seeking students who may be unaware of some aspects of academic culture.
In particular, if you think a trainee is doing good work and should apply for a scholarship, job,
graduate program, or conference, tell them! They may undervalue their accomplishments without
direct feedback.

Be explicit and straightforward in your communications and avoid reliance on metaphors,
colloquialisms, or unspoken messages. Provide critical information in writing so that trainees can
refer to it as needed—for example, shared note-taking documents can boost group productivity
while helping you keep track of trainee progress. Provide direct instruction on research practices
like record-keeping, but allow trainees to adapt their systems to fit their needs. Provide timelines
and context: trainees are less likely to misinterpret instructions when they understand how each
step fits into the bigger picture, leading to enhanced ownership of their contributions and fewer
costly mistakes.

Meet regularly with trainees and be clear about how and when they can contact you. Listen care-
fully and take all questions seriously, especially when the answer seems obvious to you. Autistic
trainees may be afraid to ask for clarification more than once due to prior negative experiences;
make a habit of checking for understanding while recognizing that autistic people may need more
time to process information. Clear communication benefits all researchers!

3. Check the sensory environment
Differences in sensory processing are common in the autistic population. Background noise,
lighting, temperature, smells, textures, and visual distractions can lead to sensory overwhelm
and prevent an autistic trainee from doing their best work. Frequent interruptions, even small
ones, can disrupt autistic thought processes, sapping energy and reducing focus. Unstructured
networking events and crowded poster sessions can be overwhelming to some autistic people;
instead of relying solely on them for recruitment, promote alternative methods such as cen-
tralized departmental publicity for research group openings with clear instructions on how to apply.

Each person’s sensory profile is unique, and autistic people may be unaware that their sensory
experiences differ from others’. Encourage trainees to experiment with different work environ-
ments and identify the conditions under which they function best. Many sensory issues are
easy to accommodate by allowing use of earplugs or adjustable task lighting, adjusting seating
arrangements and social expectations, scheduling quiet breaks between high-intensity activi-
ties such as meetings or social events, establishing explicit turn-taking or alternative contribution
modes (e.g., written) in group meetings, and permitting trainees to work from home or use video-
conferencing when their physical presence on site is not required. Be alert to environments or
situations in which a trainee disengages or becomes distressed, but be aware that the toll of sen-
sory overwhelm may appear only hours after the offending exposure; a trainee missing workdays
may be a sign of problems with the sensory or social environment.

4. Be aware of different cognitive profiles
Autism is fundamentally a different way of thinking. Autistic people often take wildly different
approaches to problems, and notice different details and patterns, than non-autistic people:
embracing this diversity of thought within your research group promotes better decision-making
and more creative approaches to problem-solving. Autistic thought processes tend to be
“bottom-up," collecting details first and then combining them to build a coherent bigger picture.
Facilitate this by providing concrete examples to illustrate abstract concepts and give additional
detail when asked so that trainees can incorporate novel information into their mental schema
before moving on. Autistic people can be “deep divers” when researching a topic: capitalize on
this when appropriate, but provide clear guidance on how much depth and scope is required and
how trainees should prioritize their time expenditures.

Bottom-up thinking requires time and effort: allow sufficient processing time, especially when
trainees are expected to make decisions, and avoid requiring multitasking where possible. Autistic
people tend to do their best work in familiar and predictable environments: unavoidable changes
to schedules, processes, or physical settings should be communicated at least a day in advance,
with an explanation of their necessity, to allow for pre-processing. Provide group meeting agen-
das in advance so that trainees can come prepared. Allow trainees to familiarize themselves in
advance with the location and equipment for high-stakes activities such as presentations or thesis
defences, and encourage them to keep extraneous distractions (such as unfamiliar clothing) to a
minimum during these events. Consider developing a “buddy system” by which group members
can help each other navigate unfamiliar environments during conference travel or fieldwork. Be
aware that autistic people typically have a much more uneven skill-set than the majority: a single
person can be a top performer in some areas while struggling in others.

5. Model inclusivity to your group
Autistic people naturally display different body language, facial expressions, and vocal rhythm and tone than the majority of the population. This leads most non-autistic people to form negative first
impressions and be less likely to pursue interactions with autistic people than with members of their own neurotype. It also leads to frequent misinterpretations of autistic people’s intent and emotional
state, with potentially traumatizing consequences. Most autistic people attempt to mitigate this by effortfully “masking" or camouflaging their autistic traits. Masking consumes a tremendous amount of
cognitive energy and contributes to social isolation, burnout, and mental health problems.

Your trainees will do their best work when they feel safe to be themselves. As leader, you set the tone for your group: model acceptance of physical and vocal autistic traits as well as all other
forms of diversity, and do not tolerate bullying or mockery. Recognize that you hold immense power over your trainees’ futures and do everything you can to identify sources of trainee anxiety and
to reduce or eliminate them. Encourage group social relations but avoid imposing forced socialization; autistic sociality can look very different from non-autistic norms. Model direct, straightforward,
non-judgemental communication: state your feelings, and ask for clarification rather than making assumptions about others’ emotional states. Actively structure your training environment to leverage
each trainee’s strengths while accommodating their weaknesses, and establish a clear and easily-navigated process for implementing accommodations for co-occurring disabilities. Critically examine
your “best practices” to ensure that they really are “best” for everyone.

A footnote on language
Throughout this guide I have used identity-first language (“autistic person”) because it is overwhelmingly preferred by autistic adults. When speaking to an autistic person, ask them what their own
personal terminology preference is, and use it.
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