Higgs physics beyond the Standard Model

Heather Logan
Carleton University

ATLAS Canada meeting
Carleton University, May 2016
LHC measurements of 125 GeV Higgs boson properties are fully consistent with SM picture:

But there is still plenty of room for extensions of the Higgs sector.

This talk:
- What else could be condensed in the vacuum?
- How do we search for its excitations?

Heather Logan (Carleton U.) Higgs physics beyond the SM ATLAS Canada May 2016
This talk: Outline

What else could be condensed in the vacuum?
(1) Additional source of fermion masses?
 → two-Higgs-doublet models
(2) Additional (non-doublet) source of electroweak breaking?
 → models with higher-isospin scalar multiplets

For each: How do we search for its excitations?
- Properties & signatures of extra Higgs bosons
- Patterns of couplings and spectra
- A few interesting search channels

Conclusions
Additional sources of fermion masses?

→ Two-Higgs-Doublet Model
Two-Higgs-Doublet Model

“Type-II” model is the Higgs sector of the MSSM (at tree level)

Five Higgs states: h, H, A, H^\pm

Most-well-known searches:

$b\bar{b} \to H/A \to \tau\tau$; $t \to bH^+$ or $pp \to \bar{t}H^+, H^+ \to \tau\nu$

Also $gg \to H \to WW, ZZ$; $pp \to H/A \to Z + A/H$

Heather Logan (Carleton U.) Higgs physics beyond the SM ATLAS Canada May 2016
Two-Higgs-Doublet Model

Two doublets: Φ_1 and Φ_2, vevs $v_1^2 + v_2^2 = v_{SM}^2$, $v_2/v_1 \equiv \tan \beta$
- Up-type quark masses from Φ_2: coupling strength m_u/v_2
- Down-type quark and lepton masses from Φ_2 (Type I) or Φ_1 (Type II): coupling strength $m_{d,\ell}/v_2$ (Type I) or $m_{d,\ell}/v_1$ (Type II)

Five Higgs states (counting H^+ and H^- as two):

$$h = \cos \alpha \phi_2^{0,r} - \sin \alpha \phi_1^{0,r} \quad H = \sin \alpha \phi_2^{0,r} + \cos \alpha \phi_1^{0,r}$$
$$A = \cos \beta \phi_2^{0,i} - \sin \beta \phi_1^{0,i} \quad H^{\pm} = \cos \beta \phi_2^{\pm} - \sin \beta \phi_1^{\pm}$$

First do a change of basis to the Higgs basis:

$$\Phi_h = \sin \beta \Phi_2 + \cos \beta \Phi_1 \quad \Phi_0 = \cos \beta \Phi_2 - \sin \beta \Phi_1$$

Defined by vacuum expectation values:
Φ_h vev $= v_{SM}$, Φ_0 vev $= 0$
Two-Higgs-Doublet Model: Higgs basis

\(\Phi \)

\[\Phi_{h} \text{ vev} = v_{SM}, \, \Phi_{0} \text{ vev} = 0 \]

Five Higgs states (counting \(H^{+} \) and \(H^{-} \) as two):

\[h = \sin(\beta - \alpha) \phi_{h}^{0,r} - \cos(\beta - \alpha) \phi_{0}^{0,r} \]
\[H = \cos(\beta - \alpha) \phi_{h}^{0,r} + \sin(\beta - \alpha) \phi_{0}^{0,r} \]
\[A = \phi_{0}^{0,i} \]
\[H^{\pm} = \phi_{0}^{\pm} \]

Couplings to vector boson pairs:

\(\phi_{h}^{0,r}VV \) couplings same as SM, while \(\phi_{0}^{0,r}VV = 0 \):

- Couplings of \(h \) to \(VV \) universally suppressed by \(\sin(\beta - \alpha) \equiv \kappa_{h}^{V} \)
- Couplings of \(H \) to \(VV \) are complementary: \(\cos(\beta - \alpha) \equiv \kappa_{H}^{V} \)

Sum rule:

\[(\kappa_{V}^{h})^{2} + (\kappa_{V}^{H})^{2} = \sin^{2}(\beta - \alpha) + \cos^{2}(\beta - \alpha) = 1 \]

Q: how big can \(\kappa_{V}^{H} = \cos(\beta - \alpha) \) be? Controls \(H \to WW, ZZ \) and VBF \(\to H \)

From \(h \) coupling measurements:

\[\kappa_{V}^{h} \sim 1 \pm 0.2 \quad \Rightarrow \quad |\kappa_{V}^{H}| \lesssim 0.45 \]

Heather Logan (Carleton U.) Higgs physics beyond the SM ATLAS Canada May 2016
Perturbative unitarity of $WW \rightarrow WW$ scattering: E^0 term

- SM: $m_h^2 < 16\pi v^2/5 \simeq (780 \text{ GeV})^2$ Lee, Quigg & Thacker 1977

- 2HDM: $(\kappa_V^h)^2 m_h^2 + (\kappa_V^H)^2 m_H^2 < 16\pi v^2/5$

- combine with sum rule $(\kappa_V^h)^2 + (\kappa_V^H)^2 = 1$:

$$\cos^2(\beta - \alpha) \equiv (\kappa_V^H)^2 < \frac{16\pi v^2 - 5m_h^2}{5(m_H^2 - m_h^2)} \approx \frac{16\pi v^2}{5m_H^2} \approx \left(\frac{780 \text{ GeV}}{m_H}\right)^2$$

Heather Logan (Carleton U.) Higgs physics beyond the SM ATLAS Canada May 2016
Two-Higgs-Doublet Model: Higgs basis Haber et al, 1507.00933

\[\mathcal{V} = Y_1 H_1^\dagger H_1 + Y_2 H_2^\dagger H_2 + Y_3 [H_1^\dagger H_2 + \text{h.c.}] + \frac{1}{2} Z_1 (H_1^\dagger H_1)^2 + \frac{1}{2} Z_2 (H_2^\dagger H_2)^2 + Z_3 (H_1^\dagger H_1) (H_2^\dagger H_2) \]

\[+ Z_4 (H_1^\dagger H_2) (H_2^\dagger H_1) + \left\{ \frac{1}{2} Z_5 (H_1^\dagger H_2)^2 + [Z_6 (H_1^\dagger H_1) + Z_7 (H_2^\dagger H_2)] H_1^\dagger H_2 + \text{h.c.} \right\}, \]

(2)

\[Y_1, Y_2, Y_3 \sim (\text{mass})^2, \quad Z_1, \ldots, Z_7 \text{ dimensionless} \quad H_1 \equiv \Phi_h, \quad H_2 \equiv \Phi_0 \]

Minimization of potential yields \(Y_1 = -Z_1 v^2/2, \quad Y_3 = -Z_6 v^2/2 \)

Only one dimensionful parameter \(Y_2 \equiv M^2 \), can be large \(\gg v^2 \)

Masses:

\[m_{H^\pm}^2 = Y_2 + Z_3 v^2/2 \quad m_A^2 = m_{H^\pm}^2 + (Z_4 - Z_5) v^2/2 \]

\[M_{h,H}^2 = \begin{pmatrix} Z_1 v^2 & Z_6 v^2 \\ Z_6 v^2 & m_A^2 + Z_5 v^2 \end{pmatrix} \]

\[m_h^2 \sim Z_1 v^2 \quad m_H^2 \sim M^2 \quad \cos(\beta - \alpha) \sim Z_6 v^2/M^2 \sim v^2/M^2 \]

\[\Rightarrow \text{Fast decoupling!} \quad \text{Bad news for VBF} \rightarrow H \text{ and } H \rightarrow WW/ZZ \text{ at high } m_H \]

\[\cos^2(\beta - \alpha) \equiv (\kappa_V^H)^2 \sim Z_6^2 \frac{v^4}{m_H^4} = Z_6^2 \left(\frac{246 \text{ GeV}}{m_H}\right)^4 \]

Heather Logan (Carleton U.) Higgs physics beyond the SM ATLAS Canada May 2016
Two-Higgs-Doublet Model: fermion couplings

Two doublets: Φ_1 and Φ_2, vevs $v_1^2 + v_2^2 = v_{SM}^2$, $v_2/v_1 \equiv \tan \beta$
- Up-type quark masses from Φ_2: coupling strength m_u/v_2
- Down-type quark and lepton masses from Φ_2 (Type I) or Φ_1 (Type II): coupling strength $m_d,\ell/v_2$ (Type I) or $m_d,\ell/v_1$ (Type II)

First do a change of basis to the Higgs basis: Φ_h vev = v_{SM}, Φ_0 vev = 0

$$\Phi_h = \sin \beta \, \Phi_2 + \cos \beta \, \Phi_1 \quad \Phi_0 = \cos \beta \, \Phi_2 - \sin \beta \, \Phi_1$$

Physical Higgs states: $\cos(\beta - \alpha) \simeq Z_6 v_2^2/M^2 \sim v^2/M^2$

$$h = \sin(\beta - \alpha) \phi^{0,r}_h - \cos(\beta - \alpha) \phi^{0,r}_0$$
$$H = \cos(\beta - \alpha) \phi^{0,r}_h + \sin(\beta - \alpha) \phi^{0,r}_0$$
$$A = \phi^{0,i}_0 \quad H^\pm = \phi^\pm_0$$

So $A = \phi^{0,i}_0$, $H^\pm = \phi^\pm_0$, and for decoupling or alignment $H \simeq \phi^{0,r}_0$: the BSM Higgs bosons all live in the Φ_0 doublet.

Heather Logan (Carleton U.) Higgs physics beyond the SM ATLAS Canada May 2016
Two-Higgs-Doublet Model: fermion couplings

Two doublets: Φ_1 and Φ_2, vevs $v_1^2 + v_2^2 = v_{SM}^2$, $v_2/v_1 \equiv \tan \beta$
- Up-type quark masses from Φ_2: coupling strength m_u/v_2
- Down-type quark and lepton masses from Φ_2 (Type I) or Φ_1 (Type II): coupling strength $m_{d,\ell}/v_2$ (Type I) or $m_{d,\ell}/v_1$ (Type II)

First do a change of basis to the Higgs basis: Φ_h vev = v_{SM}, Φ_0 vev = 0

$$\Phi_h = \sin \beta \Phi_2 + \cos \beta \Phi_1 \quad \Phi_0 = \cos \beta \Phi_2 - \sin \beta \Phi_1$$

Coupling strengths of Φ_0 to fermions:

Type I: $\cos \beta \times m_f/v_2 = \cot \beta \times m_f/v_{SM}$ (all quarks & leptons)

Type II: $\cos \beta \times m_u/v_2 = \cot \beta \times m_u/v_{SM}$ (up-type)
Type II: $\sin \beta \times m_{d,\ell}/v_1 = \tan \beta \times m_{d,\ell}/v_{SM}$ (down-type & leptons)

These are NOT suppressed when the BSM Higgses are heavy!

Good news for heavy Higgs production via gluon fusion, $b\bar{b}$-fusion

Heather Logan (Carleton U.) Higgs physics beyond the SM ATLAS Canada May 2016
Two-Higgs-Doublet Model: an under-exploited search channel: $gg \rightarrow H/A \rightarrow t\bar{t}$ at low $\tan \beta$

Type I: $\cot \beta \times m_f/v_{\text{SM}}$ (all quarks & leptons)

Type II: $\cot \beta \times m_u/v_{\text{SM}}$ (up-type)
Type II: $\tan \beta \times m_d,\ell/v_{\text{SM}}$ (down-type & leptons)

- Nontrivial interference with continuum $gg \rightarrow t\bar{t}$ background
- Expts need theory prediction including signal/background interference, lineshape, & QCD corrections
- Associated prod’n $pp \rightarrow b\bar{b}H/A$, $H/A \rightarrow t\bar{t}$ could help at moderate $\tan \beta$

Dicus, Stange, & Willenbrock, 1994

Heather Logan (Carleton U.) Higgs physics beyond the SM ATLAS Canada May 2016
Additional (non-doublet) sources of electroweak breaking?

→ models with higher-isospin scalar multiplets
Part of electroweak breaking from a higher-isospin scalar field?

Fermion masses can arise only from SU(2)\textsubscript{L} doublet(s)

\[\mathcal{L} = -y_f \bar{f}_R \Phi^\dagger F_L + \cdots \rightarrow -\left(y_f / \sqrt{2} \right) (\phi^0, r + v_\phi) \bar{f}_R f_L + \text{h.c.} \]

\[m_f = y_f v_\phi \left/ \sqrt{2} \right. \]

\[\phi^0, r \bar{f} f : iy_f / \sqrt{2} = im_f / v_\phi \]

\(F_L \) is doublet, \(f_R \) is singlet, need \(\Phi \) doublet for gauge invariance

Top quark Yukawa perturbativity \(\Rightarrow \) lower bound on doublet vev: define \(\cos \theta_H \equiv v_\phi / v_{\text{SM}} \), then \(\tan \theta_H < 10/3 \) (or \(\cos \theta_H > 0.287 \))

Scalar couplings to fermions come from their doublet content

\[\Phi = \left(\begin{array}{c} \phi^+ \\ (v_\phi + \phi^0, r + i\phi^0, i) / \sqrt{2} \end{array} \right) \]

With other scalar fields in play, Goldstone bosons are linear combinations of different fields.

Heather Logan (Carleton U.) Higgs physics beyond the SM ATLAS Canada May 2016
Part of electroweak breaking from a higher-isospin scalar field?

W and Z masses arise from anything carrying $SU(2)_L \times U(1)_Y$

$$
M^2_W = \frac{g^2}{4} \sum_k 2 \left[T_k (T_k + 1) - \frac{Y_k^2}{4} \right] v_k^2 = \frac{g^2}{4} v_{SM}^2
$$

$$
M^2_Z = \frac{g^2}{4 \cos^2 \theta_W} \sum_k Y_k^2 v_k^2 = \frac{g^2}{4 \cos^2 \theta_W} v_{SM}^2
$$

$(Q = T^3 + Y/2$, vevs defined as $\langle \phi_k^0 \rangle = v_k/\sqrt{2}$ for complex reps and $\langle \phi_k^0 \rangle = v_k$ for real reps)$

Used $Q = 0$ for component carrying the vev to simplify expressions

Top Yukawa perturbativity $\rightarrow (v_\phi/v_{SM})^2 > (0.287)^2 = 0.082$

\Rightarrow At least 8.2% of $M^2_{W,Z}$ comes from doublet.

Lots of room for higher-isospin scalar contributions!

Can we constrain this exotic possibility?

Heather Logan (Carleton U.) Higgs physics beyond the SM ATLAS Canada May 2016
Problem with higher-isospin scalar fields

\[\rho \equiv \text{ratio of strengths of charged and neutral weak currents} \]

\[
\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = \frac{\sum_k 2[T_k(T_k + 1) - Y_k^2/4]v_k^2}{\sum_k Y_k^2 v_k^2}
\]

\((Q = T^3 + Y/2, \text{vevs defined as } \langle \phi_k^0 \rangle = v_k/\sqrt{2} \text{ for complex reps and } \langle \phi_k^0 \rangle = v_k \text{ for real reps}) \)

PDG 2014: \(\rho = 1.000 \, 40 \pm 0.000 \, 24 \)

We can still have higher-isospin scalars with non-negligible vevs; **only two approaches using symmetry:** (could also tune \(\rho \) by hand, but icky)

1) Impose global SU(2)_L×SU(2)_R symmetry on scalar sector \(\implies \) breaks to custodial SU(2) upon EWSB; \(\rho = 1 \) at tree level

Georgi & Machacek 1985; Chanowitz & Golden 1985

2) \(\rho = 1 \) “by accident” for \((T, Y) = (\frac{1}{2}, 1) \) doublet; \((3, 4) \) septet

Septet: Hisano & Tsumura, 1301.6455; Kanemura, Kikuchi & Yagyu, 1301.7303

Larger solutions forbidden by perturbative unitarity of weak charges.

Hally, HEL, & Pilkington 1202.5073

Heather Logan (Carleton U.) Higgs physics beyond the SM ATLAS Canada May 2016
The models

1) Models with global $\text{SU}(2)_L \times \text{SU}(2)_R$ symmetry:

 a) Georgi-Machacek model

 b) Generalizations to higher isospin

2) Model with a scalar septet (in progress)

All these models share a key common feature:

$$H^{\pm\pm} \leftrightarrow W^\pm W^\pm \text{ and } H^\pm \leftrightarrow W^\pm Z$$

with couplings controlled by vev of higher-isospin scalar(s)

Generic experimental probe is diboson resonance search in VBF.

Heather Logan (Carleton U.) Higgs physics beyond the SM ATLAS Canada May 2016
Georgi-Machacek model
Georgi & Machacek 1985; Chanowitz & Golden 1985

SM Higgs bidoublet + two isospin-triplets in a bitriplet:

\[\Phi = \begin{pmatrix} \phi^0 & \phi^+ \\ -\phi^{++} & \phi^0 \end{pmatrix} \quad X = \begin{pmatrix} \chi^{0*} & \xi^+ & \chi^{++} \\ -\chi^{++*} & \xi^0 & \chi^+ \\ \chi^{+++} & -\xi^{++*} & \chi^0 \end{pmatrix} \]

Physical spectrum: Custodial symmetry fixes almost everything!

Bidoublet: 2 \times 2 \rightarrow 3 + 1
Bitriplet: 3 \times 3 \rightarrow 5 + 3 + 1

- Two custodial singlets mix \rightarrow h^0, H^0

- Two custodial triplets mix \rightarrow (H_3^+, H_3^0, H_3^-) + Goldstones

- Custodial fiveplet \((H_5^{++}, H_5^+, H_5^0, H_5^-, H_5^{--})\) unitarizes \(VV \rightarrow VV\)
Generalized Georgi-Machacek models
Galison 1984; Robinett 1985; HEL 1999; Chang et al 2012; HEL & Rentala 2015

Replace the bitriplet with a bi-n-plet \(\Rightarrow \) “GGM$_n$”

Bidoublet: \(2 \times 2 \rightarrow 3 + 1 \)
Bitriplet: \(3 \times 3 \rightarrow 5 + 3 + 1 \)
Biquartet: \(4 \times 4 \rightarrow 7 + 5 + 3 + 1 \)
Bipentet: \(5 \times 5 \rightarrow 9 + 7 + 5 + 3 + 1 \)
Bisextet: \(6 \times 6 \rightarrow 11 + 9 + 7 + 5 + 3 + 1 \)

Larger bi-n-plets forbidden by perturbative unitarity of weak charges!
Hally, HEL, & Pilkington 1202.5073

- Two custodial singlets mix \(\rightarrow h^0, H^0 \)
- Two custodial triplets mix \(\rightarrow (H^+_3, H^0_3, H^-_3) + \) Goldstones
- Custodial fiveplet \((H^{++}_5, H^+_5, H^0_5, H^-_5, H^{--}_5) \) unitarizes \(VV \rightarrow VV \)
- Additional states

Heather Logan (Carleton U.) Higgs physics beyond the SM ATLAS Canada May 2016
Phenomenology: custodial fiveplet $H_5^{++}, H_5^+, H_5^0, H_5^-, H_5^{--}$

Custodial-fiveplet comes only from higher-isospin scalars: no couplings to fermions!

$$s_H^2 \equiv \text{fraction of } M_W^2, M_Z^2 \text{ from higher-isospin scalar}$$

H_5VV couplings are nonzero: very different from 2HDM!

$$H_5^0 W_\mu^+ W_\nu^- : \ -i \frac{2 M_W^2}{v_{\text{SM}}} \frac{g_5}{\sqrt{6}} g_{\mu\nu},$$

$$H_5^0 Z_\mu Z_\nu : \quad i \frac{2 M_Z^2}{v_{\text{SM}}} \sqrt{\frac{2}{3}} g_5 g_{\mu\nu},$$

$$H_5^+ W_\mu^- Z_\nu : \quad -i \frac{2 M_W M_Z}{v_{\text{SM}}} \frac{g_5}{\sqrt{2}} g_{\mu\nu},$$

$$H_5^{++} W_\mu^- W_\nu^- : \quad i \frac{2 M_W^2}{v_{\text{SM}}} g_5 g_{\mu\nu},$$

Coupling strength depends on the isospins of the scalars involved:

$$g_5^{\text{GM}} = \sqrt{2} s_H, \quad g_5^{\text{GGM4}} = \sqrt{\frac{24}{5}} s_H, \quad g_5^{\text{GGM5}} = \sqrt{\frac{42}{5}} s_H, \quad g_5^{\text{GGM6}} = \frac{8}{\sqrt{5}} s_H$$

Direct probe of higher-isospin vacuum condensate!

Heather Logan (Carleton U.) Higgs physics beyond the SM ATLAS Canada May 2016
Constraint from VBF $H^\pm_5 \to W^\pm W^\pm \to$ same-sign dileptons

Theorist-recasting of ATLAS $W^\pm W^\pm jj$ cross-section measurement \[\text{ATLAS, 1405.6241} \]

⇒ put limit on VBF $\to H^\pm_5$ cross section, directly constrain g_5

$g_5 = \sqrt{2}s_H$ in GM model

$v_\Delta \equiv v_\chi = s_H v_{SM}/\sqrt{8}$

Chiang, Kanemura & Yagyu, 1407.5053

Heather Logan (Carleton U.) Higgs physics beyond the SM ATLAS Canada May 2016
What about higher H_5 masses?

Perturbative unitarity of $WW \rightarrow WW$ scattering: E^0 term

- SM: $m_h^2 < 16\pi v_{SM}^2 / 5 \simeq (780 \text{ GeV})^2$ Lee, Quigg & Thacker 1977

- GM model: $\left[(\kappa_V^h)^2 m_h^2 + (\kappa_V^H)^2 m_H^2 + \frac{2}{3} g_5^2 m_5^2 \right] < 16\pi v_{SM}^2 / 5$

- combine with sum rule $(\kappa_V^h)^2 + (\kappa_V^H)^2 - \frac{5}{6} g_5^2 = 1$:

$$g_5^2 < \frac{6 (16\pi v_{SM}^2 - 5m_h^2)}{5 (4m_5^2 + 5m_h^2)} \simeq \frac{24\pi v_{SM}^2}{5m_5^2} \simeq \left(\frac{955 \text{ GeV}}{m_5} \right)^2$$

Good news for VBF production (compared to 2HDM $(\kappa_V^H)^2 \sim v^4 / m_H^4$)

Heather Logan (Carleton U.) Higgs physics beyond the SM ATLAS Canada May 2016
\begin{align*}
 g_5^{GM} &= \sqrt{2}s_H, &
 g_5^{GGM4} &= \sqrt{\frac{24}{5}}s_H, &
 g_5^{GGM5} &= \sqrt{\frac{42}{5}}s_H, &
 g_5^{GGM6} &= \frac{8}{\sqrt{5}}s_H
\end{align*}

Note: s_H^2 is the exotic fraction of $M_{W,Z}^2$ is least constrained in original Georgi-Machacek model.

Heather Logan (Carleton U.) \quad Higgs physics beyond the SM \quad ATLAS Canada May 2016
Constraint from VBF $H^\pm_5 \to W^\pm Z \to qq\ell^+\ell^-$

Dedicated ATLAS search for singly-charged resonance in VBF, using Georgi-Machacek model as benchmark

$g_5^2 \lesssim (955 \text{ GeV}/m_5)^2 \Rightarrow \Gamma_{H^+/m_5} \lesssim 15\%$ for $m_5 \gg M_W$

Heather Logan (Carleton U.) Higgs physics beyond the SM ATLAS Canada May 2016
What about lower H_5 masses? pair production, $H_5^{++} \rightarrow W^+W^+$

Constraint on $H^{\pm\pm}H^{\mp\mp} + H^{\pm\pm}H^\mp$ in Higgs Triplet Model from recasting ATLAS like-sign dimuons search [ATLAS, 1412.0237]

Kanemura, Kikuchi, Yagyu & Yokoya, 1412.7603

Adapt to generalized Georgi-Machacek models using

$$
\sigma_{\text{tot}}^{\text{NLO}}(pp \rightarrow H_5^{++}H_5^{- -})_{\text{GM}} = \sigma_{\text{tot}}^{\text{NLO}}(pp \rightarrow H^{++}H^{- -})_{\text{HTM}}, \\
\sigma_{\text{tot}}^{\text{NLO}}(pp \rightarrow H_5^{\pm\pm}H_5^{\mp})_{\text{GM}} = \frac{1}{2}\sigma_{\text{tot}}^{\text{NLO}}(pp \rightarrow H^{\pm\pm}H^{\mp})_{\text{HTM}}.
$$

$$
\Rightarrow m_5 \gtrsim 76 \text{ GeV}, \\
\text{independent of } g_5
$$

Takes advantage of mass-degeneracy of H_5^{++} and H_5^+

HEL & Rentala, 1502.01275

Heather Logan (Carleton U.) Higgs physics beyond the SM ATLAS Canada May 2016
What about lower H_5 masses?

Scalar pair prod’n $q\bar{q'} \rightarrow W^* \rightarrow H_5^0H_5^\pm$: large xsec at low mass
Fermiophobic H_5^0: decays to $\gamma\gamma$ dominate at low mass

Take advantage of 8 TeV LHC diphoton cross-section limits!

Excludes $m_5 \lesssim 110$ GeV independent of exotic vev

For illustration: plot neglects charged loop contributions to $H_5^0 \rightarrow \gamma\gamma$
(but a full model scan is now feasible)

Delgado, Garcia-Pepin, Quirós, Santiago, & Vega-Morales, 1603.00962

$H_5^+ \rightarrow W^+\gamma$ also interesting: BR implementation in progress

Heather Logan (Carleton U.) Higgs physics beyond the SM ATLAS Canada May 2016
Conclusions

LHC Higgs measurements are (so far) consistent with the SM

But there is still room for New Physics in the electroweak-symmetry-breaking sector: additional scalar fields condensed in the vacuum!

1. Additional source of fermion masses?
 → two-Higgs-doublet models

2. Additional (non-doublet) source of electroweak breaking?
 → models with higher-isospin scalar multiplets

The more these contribute to EW breaking/fermion masses, the harder they are to hide from experiments.