The Littlest Higgs boson at a photon collider

Heather Logan
(University of Wisconsin, Madison)

Victoria Linear Collider Workshop
July 28-31, 2004

Based on:
H.L., hep-ph/0405072
The Higgs is produced via the loop-induced $\gamma\gamma H$ coupling.
→ Sensitive to new physics running in the loop.

Expected precisions: $\gamma\gamma \rightarrow H \rightarrow XX$

<table>
<thead>
<tr>
<th>Expt.</th>
<th>M_H</th>
<th>bb</th>
<th>WW^*</th>
<th>$\gamma\gamma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLICHE</td>
<td>115</td>
<td>2%</td>
<td>5%</td>
<td>22%</td>
</tr>
<tr>
<td>NLC</td>
<td>120</td>
<td>2.9%</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>TESLA</td>
<td>120</td>
<td>1.7–2%</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>1.8%</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>2.1%</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

• Rate for $\gamma\gamma \rightarrow H \rightarrow b\bar{b}$ can be measured to about 2% for $115 \text{ GeV} \leq M_H \lesssim 140 \text{ GeV}$.
• $b\bar{b}$ will be the best-measured decay mode for this Higgs mass range in $\gamma\gamma$ collisions.
• Compare LHC or LC: Γ_γ to 15–20%.
\[\gamma \gamma \to H \text{ in the Standard Model and beyond} \]

\[\gamma \gamma \to H \text{ comes from the gauge-invariant dim-6 operator} \]

\[\mathcal{L} = \frac{C}{\Lambda^2} H^T H F_{\mu \nu} F^{\mu \nu} \]

induced by \(W \) boson and top quark loops in the SM.

Taking \(C = e^2/16\pi^2 \) (electromagnetic, loop-induced), \(M_H = 115 \) GeV and \(\Gamma_\gamma^{SM} \) calculated using HDECAY, we find \(\Lambda_{SM} \simeq 170 \) GeV. Right scale for \(W \) and \(t \) loops.

How high a \(\Lambda_{\text{new}} \) can be probed with a 2% measurement of \(\gamma \gamma \to H? \]

\[\frac{C}{\Lambda^2} \longrightarrow \frac{C_{SM}}{\Lambda_{SM}^2} + \frac{C_{\text{new}}}{\Lambda_{\text{new}}^2} \]

If \(C_{\text{new}} = C_{SM} \)

(weakly coupled new physics): \(\Lambda_{\text{new}} = 1.2 \text{ TeV}, \ 0.74 \text{ TeV} \)

If \(C_{\text{new}} = 1 \)

(strongly coupled new physics): \(\Lambda_{\text{new}} = 48 \text{ TeV}, \ 31 \text{ TeV} \)
The little Higgs models are a new approach to stabilize the weak scale against radiative corrections, thereby solving the naturalness problem of a light Higgs boson.

New particles at the TeV scale cancel off the SM quadratic divergence of the Higgs mass from top, gauge and Higgs loops.

- Higgs is a pseudo-Goldstone boson from global symmetry breaking at scale \(\Lambda \sim 4\pi f \sim 10 - 30 \text{ TeV} \);
- Quadratic divergences cancelled at one-loop level by new states \(M \sim gf \sim 1 - 3 \text{ TeV} \);
- Higgs acquires a mass radiatively at the EW scale \(v \sim \frac{g^2 f}{4\pi} \sim 100 - 300 \text{ GeV} \).
The Littlest Higgs model is a nonlinear sigma model broken by a condensate $f \sim \text{TeV}$.

Global symmetry: $\text{SU}(5) \rightarrow \text{SO}(5)$
Nonlinear sigma model field Σ (5×5) contains H (plus extra scalars). H is a Nambu-Goldstone boson of the global symmetry breaking.

Gauge symmetry: $[\text{SU}(2)]^2 \times [\text{U}(1)]^2 \rightarrow \text{SU}(2)_L \times \text{U}(1)_Y$
Embedded in the $\text{SU}(5)$ global symmetry \rightarrow Explicitly breaks global symmetry; makes H a pseudo-Nambu-Goldstone boson.

Yukawa interactions: Extra $\text{SU}(2)$-singlet vector-like pair of quarks T, \bar{T} added to top sector.
\rightarrow Explicitly breaks global symmetry; makes H a pseudo-Nambu-Goldstone boson.
The Littlest Higgs model, continued

New particle content at the TeV scale:
\(Z_H, W_H^\pm \) – SU(2) triplet of gauge bosons from the breaking \([SU(2)]^2 \rightarrow SU(2)_L\). Cancels the Higgs mass divergence from \(W^\pm, W^3 \).
\(T \) – vectorlike charge-2/3 quark. Cancels the Higgs mass divergence from the top quark.
\(\Phi^{0,+,++} \) – SU(2) triplet of scalars. Cancels the Higgs mass divergence from the Higgs self-interaction.
\(A_H \) – U(1) gauge boson from the breaking \([U(1)]^2 \rightarrow U(1)_Y\). Cancels the Higgs mass divergence from \(B_Y \). [EW precision favors only one \(U(1) \rightarrow \) no \(A_H \) particle]

Model parameters:
\(f \) – new physics scale \(\sim \) TeV
\(c \) – SU(2)\(_{1,2}\) gauge boson mixing angle \([Z_H, W_H^\pm]\)
\(c_t \) – top sector parameter \([T]\)
\(x \) – Higgs sector parameter (controls \(\Phi \) vev)
\(c' \) – U(1)\(_{1,2}\) gauge boson mixing angle [EW precision favors only one \(U(1) \rightarrow c' = 1/\sqrt{2} \)]
Corrections to $\gamma\gamma \rightarrow H$ in the Littlest Higgs model

- $\gamma\gamma \rightarrow H$ is loop induced: TeV-scale charged particles W^\pm_H, T, Φ^\pm, $\Phi^{\pm\pm}$ can run in the loops.

- Higgs couplings to SM particles are modified due to mixing between SM and TeV-scale particles and corrections to SM parameters.

Accessible range found by scanning over model parameters. Corrections are of order v^2/f^2.

(bug fixed in code)
Higgs decays in the Littlest Higgs model

Corrections to Higgs decays all $\mathcal{O}(v^2/f^2)$:

$$\frac{\text{Rate}}{\text{SM}} = 1 + \frac{v^2}{f^2} \text{fn}(x, x^2, c_t^2) + a \frac{M_W^2}{M_{Z_H}^2} + b \frac{M_W^2}{M_{A_H}^2}$$

- Corrections about the same size in each channel.
- Best channel from experimental side: $H \rightarrow b\bar{b}$.

Model parameters:
- f – new physics scale \sim TeV
- $c \leftrightarrow M_{Z_H} - \text{SU(2)}_{1,2}$ gauge boson mixing angle $[Z_H, W^{\pm}_H]$
- c_t – top sector parameter $[T]$
- x – Higgs sector parameter (controls Φ vev)
- $c' \leftrightarrow M_{A_H} - \text{U(1)}_{1,2}$ gauge boson mixing angle $[\text{one U(1)} \rightarrow c' = 1/\sqrt{2}]$

![Graph showing rate of $\gamma H \rightarrow b\bar{b}$ as a function of c for $x = 0.9, 0, 0.5$]
Using $\gamma \gamma \to H \to b \bar{b}$ to probe the Littlest Higgs

\rightarrow Test the model: probe $\Lambda_{new} \sim 1 - 3$ TeV.

\rightarrow Search for strongly-coupled UV completion:
 probe $\Lambda_{new} \sim 10-30$ TeV.

- A strongly coupled UV completion should affect $\gamma \gamma \to H$ at the same level as the TeV-scale weakly-coupled new physics.

- A weakly coupled UV completion should affect $\gamma \gamma \to H$ at $\sim v^2/\Lambda^2$ compared to the SM coupling: too small to observe.

Must predict the rate $R = R_{SM} + R_{LH}$ for $\gamma \gamma \to H \to b \bar{b}$ with precision comparable to the 2% photon collider expt uncertainty.

We therefore compute how well each model parameter must be measured (at the LHC) in order to contribute no more than 1% uncertainty to R (i.e., $|\delta R/R_{SM}| \leq 1$).

Since $R_{LH}/R_{SM} \sim \mathcal{O}(10\%)$, only need to compute R_{LH} to $\sim 10\%$. Feasible with hadron collider data.
Input precisions: c_t

Sensitivity comes from: t coupling to Higgs, T loop.

Measure c_t from the $Wb \rightarrow T$ cross section:

$$\left(c_t^2 = 0.8, 0.5, 0.2 \right)$$

or extract from T mass:

$$M_T = m_t f / v s_t c_t$$

Not sensitive to c_t at a significant level.
→ Don’t need a measurement of this parameter.
Input precisions: x

Sensitivity comes from: $H-\Phi^0$ mixing, corrections to EW inputs (M_W, M_Z, G_F), $\Phi^+\Phi^-$ loop.

Need to measure x at low f.

- Triplet scalar sector:
 \[M_{\Phi} = \sqrt{2} M_H f / v \sqrt{1 - x^2} \]
 \[W^+W^+ \to \Phi^{++} \to W^+W^+ \propto x^2 \]
 Unfortunately Φ prod. too small!

- Shift in M_W:
 Current $\delta M_W = 39$ MeV good enough except for $x \lesssim 0.05$ for $f = 1$ TeV.
 Tev Run II: 30 MeV, LHC: 15 MeV.
Input precisions: M_{ZH} and M_{AH}

Trade $c \rightarrow M_{ZH}$, $c' \rightarrow M_{AH}$: more easily measured (dileptons).

$$M_{ZH} = M_{WH} = g f / 2 s c,$$

$$M_{AH} = g' f / 2 \sqrt{5} s' c'$$

Sensitivity comes from:

- M_{ZH}: corrections to EW inputs (M_W, M_Z, G_F), W^\pm_H in loop.
- M_{AH}: corrections to EW inputs (M_Z, G_F).

EW precision data: $M_{ZH} \gtrsim 2$ TeV.

If model contains A_H (disfavored by EW prec.):

- $\delta R / R_{SM} = 1\%$
Input precisions: f

Overall scale parameter: new effects go like v^2/f^2.

EW precision constraints: $f \gtrsim 1$ TeV \rightarrow want $\gtrsim 7\%$ precision.
Input precisions: f, continued

Extract f from $M_{ZH} = gf/2sc$ and $pp \to Z_H$ cross section $\propto c^2/s^2$.

Three benchmark points:
1. $M_{ZH} = 2$ TeV, $\cot \theta = 0.2$
2. $M_{ZH} = 2$ TeV, $\cot \theta = 0.5$
3. $M_{ZH} = 4$ TeV, $\cot \theta = 0.2$

- Uncertainty on M_{ZH} from dilepton mass reconstruction.
- Uncertainty on cross section from statistics: $\delta \sigma/\sigma = 1/\sqrt{N_S}$.
Input precisions: \(f \), continued

\[
\delta M_{ZH} = 0, \ 2\%, \ 4\%.
\]

<table>
<thead>
<tr>
<th>Point</th>
<th>(f) (GeV)</th>
<th>Statistical uncert. on (\sigma \times \text{BR}(ee))</th>
<th>(\delta f / f) ((\delta M_{ZH})) (0%) (2%) (4%)</th>
<th>Desired (\delta f / f) (no (A_H)/with (A_H))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1180</td>
<td>13% (59 evts)</td>
<td>2% (2%) (4%)</td>
<td>10% / 12%</td>
</tr>
<tr>
<td>2</td>
<td>2454</td>
<td>2.0% (2380 evts)</td>
<td>0.5% (5%) (9%)</td>
<td>43% / 49%</td>
</tr>
<tr>
<td>3</td>
<td>2360</td>
<td>− (0.8 evts)</td>
<td>−</td>
<td>40% / 45%</td>
</tr>
</tbody>
</table>

\(M_{ZH} = 2 \text{ TeV} \)

\(\cot \theta = 0.2 \)

\(300 \text{ fb}^{-1} \)

\(M_{ZH} = 2 \text{ TeV} \)

\(\cot \theta = 0.5 \)

\(300 \text{ fb}^{-1} \)
Other uncertainties: parameter extraction

Parameter extraction from LHC data looks good in most of parameter space. But there are other sources of uncertainty:

- Higher order terms in NLΣM v^2/f^2 expansion for $c, c' \leftrightarrow M_{Z_H}, M_{A_H}$: Few-percent; straightforward to include (thy)

- Z_H cross section:
 - QCD corrections to Drell-Yan: NLO K-factor ~ 1.4; differential NNLO calc done: under control
 - LHC lumi uncertainty $\sim 5\%$: small enough

- Z_H mass measurement: $\sim 4\%$ wanted
 - Electroweak radiative corrections to $M_{Z_H} \leftrightarrow$ model params: more work needed! (thy)
 - TeV-momentum leptons at LHC: good energy resolution and energy scale calibration needed: apparently not yet studied! (expt)
Other uncertainties: Photon collider issues

How solid is the 2% measurement of the rate for $\gamma\gamma \rightarrow H \rightarrow b\bar{b}$?

- $\gamma\gamma$ luminosity and polarization spectra must be measured to normalize the cross section. $\gamma\gamma \rightarrow e^+e^-$ (and $e^+e^-\gamma$?) for lumi spectrum; $e\gamma \rightarrow e\gamma$, $e\gamma \rightarrow W\nu$ for pol spectrum: further study needed! (expt)

- "Resolved photons": photon has a PDF containing quarks, gluons, etc. \rightarrow Higgs production via gluon fusion, $b\bar{b}$ fusion: part of cross section not due to Γ_γ; also $e^-e^- \rightarrow \nu\nu H$: quantitative estimate needed (thy)

- Background normalization must be under control to subtract from signal: what is BG uncertainty? Can it be measured? (expt)
Other uncertainties: SM Higgs coupling calculation

To detect a new-physics effect, we need solid control of the SM prediction:

→ Need to calculate R_{SM} at the 1% level.

- Radiative corrections to $\gamma\gamma \rightarrow H$
 - QCD: NLO $\sim 2\%$, NNLO negligible: under control.
 - Electroweak: light-fermion loops $\sim -(1-2)\%$; 3rd-gen loops $\mathcal{O}(G_F m_t^2) \sim -2.5\%$: under control? at the 1–2% level (thy)

- Radiative corrections to $\text{BR}(H \rightarrow b\bar{b})$
 - $H \rightarrow b\bar{b}$ QCD, EW corrections under control
 - $H \rightarrow WW, ZZ$ offshell effects, EW and QCD corrections under control (though EW/QCD RCs $\lesssim 2\%$ not yet in HDECAY) (thy)

- Parametric uncertainty in $\text{BR}(H \rightarrow b\bar{b})$ from m_b (and α_s)
 - $m_b(m_b) = 4.17 \pm 0.05$ GeV (and $\alpha_s = 0.1185 \pm 0.0020$) give $\delta[\text{BR}(H \rightarrow b\bar{b})] \simeq 1.4\%$ for $M_H = 120$ GeV: lattice (thy) and CLEO bottomonium spectroscopy (expt) should improve m_b
Photon collider can measure $\gamma\gamma \rightarrow H \rightarrow b\bar{b}$ to 2% for $115 \text{ GeV} \leq M_H \lesssim 140 \text{ GeV}$.

$\gamma\gamma \rightarrow H \rightarrow b\bar{b}$ can be reliably calculated from LHC data on model parameters in much of the Littlest Higgs model parameter space.

Probe the UV completion at $\sim 10 \text{ TeV}$!
- Strongly coupled UV completion contributes at same order as TeV-scale particles: \sim several percent for $f \sim 1 - 3 \text{ TeV}$.
- Weakly coupled UV completion should not affect $\gamma\gamma \rightarrow H$ at an observable level: \rightarrow Measurement is a test of model consistency.

Work needed on both thy and expt sides:
- TeV-scale dilepton invariant mass measurement
- Photon collider lumi/pol spectra measurements, resolved photon contribution to Higgs prod, $b\bar{b}$ background uncertainty
- SM Higgs coupling calculation $\rightarrow 1\%$ precision goal