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Abstract

The Georgi-Machacek model adds scalar triplets to the Standard Model Higgs sector in such a way
as to preserve custodial SU(2) symmetry in the scalar potential. This allows the triplets to have a non-
negligible vacuum expectation value while satisfying constraints from the p parameter. Depending on
the parameters, the 125 GeV neutral Higgs particle can have couplings to WW and ZZ larger than in
the Standard Model due to mixing with the triplets. The model also contains singly- and doubly-charged
Higgs particles that couple to vector boson pairs at tree level (W Z and like-sign W, respectively).

GMCALC is a FORTRAN program that, given a set of input parameters, calculates the particle spec-
trum and tree-level couplings in the Georgi-Machacek model, checks theoretical and indirect constraints,
and computes the branching ratios and total widths of the scalars. It also generates param_card.dat
files for MadGraph5 or MadGraph5_aMC@QNLO to be used with the corresponding FeynRules model

implementation.

*Code available from http://people.physics.carleton.ca/~logan/gmcalc/ .
T1ogan@physi<:s .carleton.ca
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1 Introduction

The Georgi-Machacek (GM) model [I], 2] is an extension of the Standard Model (SM) Higgs sector con-
taining additional scalars in the triplet representation of SU(2)y. The particle content is such that an
additional global SU(2)r symmetry can be imposed by hand on the scalar potential. This ensures that the
custodial SU(2) symmetry, which fixes p = M2, /M2 cos? Oy, = 1 at tree level in the SM, is preserved after
electroweak symmetry breaking.

Without the stringent constraint from the p parameter, the vacuum expectation value (vev) of the
triplets can be large, leading to interesting phenomenology. In particular, depending on the parameters,
the 125 GeV neutral Higgs particle can have couplings to WW and ZZ larger than in the SM due to
mixing with the triplets. The model also contains singly- and doubly-charged Higgs particles that couple
to vector boson pairs at tree level, leading to H, 5+ — WTZ and like-sign H gr T WHWT signatures. Such
an HTW™Z coupling is absent at tree level in two Higgs doublet models (2HDMs), and the HTTW W~
coupling is severely suppressed in triplet models without custodial symmetry in which the triplet vev is
forced to be very small by the experimental constraint from the p parameter.

This manual describes the FORTRAN code GMCALC. Given a set of model parameters, GMCALC
calculates the mass spectrum and relevant mixing angles in the scalar sector, as well as the tree-level
couplings of the scalars. It also checks that theoretical constraints from perturbative unitarity of the quartic
scalar couplings, bounded-from-belowness of the scalar potential, and the absence of deeper custodial-
symmetry-breaking minima are satisfied. The code also checks consistency of the parameter point with
indirect experimental constraints from the S parameter, b — sy, and B — ptp~. Finally, it computes
the branching ratios and total widths of the scalars. Most of the code is based on our work in Refs. [3] [4] [5].

GMCALC includes a routine to generate param_card.dat files for MadGraph5 to be used with the cor-
responding FeynRules [7] model implementation. The FeynRules implementation for the Georgi-Machacek
model, as well as a Universal FeynRules Output (UFO) [6] file for use with the MadGraph5_aMC@NLO
framework [§] including automatic calculation of the next-to-leading order QCD corrections, can be down-
loaded from the model database at http://feynrules.irmp.ucl.ac.be/wiki/GeorgiMachacekModell

This manual is organized as follows. In Sec. [2] we give a brief description of the GM model and set
our notation. In Sec. 3| we review the theoretical constraints and their implementation. In Sec. |4 we
describe the indirect experimental constraints that are implemented in the code. In Sec. [5| we summarize
the computation of the decay partial widths of the scalars and specify the approximations made in the
code. Finally in Sec. [6] we give instructions for using the GMCALC code.

2 Georgi-Machacek model

2.1 Scalar potential

The scalar sector of the Georgi-Machacek model consists of the usual complex doublet (¢, ¢%) with
hyperchargd'| Y = 1, a real triplet (¢7,£°,67) with Y = 0, and a complex triplet (x*+,x*, x") with
Y = 2. The doublet is responsible for the fermion masses as in the SM. In order to make the global
SU(2),xSU(2) g symmetry explicit, we write the doublet in the form of a bi-doublet ® and combine the
triplets to form a bi-triplet X:

(053 +

o = (2L %) )
XO* £+ X++

X = | —x™ & X (2)

'We use Q = T2 +Y/2.


http://feynrules.irmp.ucl.ac.be/wiki/GeorgiMachacekModel

The vevs are defined by (®) = %1%2 and (X) = v, 1343, where the Fermi constant constrains

1
2 2 _ .2 2
vy + 8vl =07 = ~ (246 GeV)~. 3
¢ b% \/EGF ( ) ( )
Note that the two triplet fields x° and ¢° must obtain the same vev in order to preserve custodial SU(2).
Furthermore we will decompose the neutral fields into real and imaginary parts according to
0,r 1 40,7
0o, Yo O tig> 0
- —+t—, — Uy +
¢ \/§ \/5 X X
where we note that £° is already a real field.
Using the notation of Ref. [3], the most general gauge-invariant scalar potential involving these fields
that conserves custodial SU(2) is given by

YO 4 iy 0

\/§ 9 50 — UX + 507 (4)

2 2
WQX):f%m@@+%ﬁ@&}mwmwmﬁ+wm@@ﬁmu)
FATr(XTXXTX) + M\ [Tr(XTX)]2 — AsTr(@T 772 Tr(X T2 X 1)
— M Tr(®I D7) (UXUT) 0y — MoTr(X Tt Xt ) (UXUT) . (5)
(A translation table to other notations used in the literature is given in the appendix of Ref. [3].) Here

the SU(2) generators for the doublet representation are 7% = 0/2 with 0 being the Pauli matrices, the
generators for the triplet representation are

1 010 1 0 — 0 10 0
tt=—1_1101]), ?!*=—1|4i 0 —i |, =100 0 |, (6)
V2 010 V2 0 + 0 0 0 -1
and the matrix U, which rotates X into the Cartesian basis, is given by
1 1
IR
— K3 7
U= -7 0 -7 (7)
0 1 0

We note that all the operators in Eq. are manifestly Hermitian, so that the parameters in the scalar
potential must all be real. Explicit CP violation is thus not possible in the Georgi-Machacek model.

2.2 Electroweak symmetry breaking and physical spectrum

Minimizing the scalar potential yields the following constraints:

oV 2 2 2 3
0= 87% = Uy |:/L2 + 4)\1U¢ +3 (2A2 — )\5) UX — §MIUX , (8)
v, ; s 2
0= 8TX = 3u3vy +3(2X2 — As) vivy + 12 (A3 + 3Ag) vy — ZM1U¢ — 18Mavy. (9)

Inserting vé =2 - 81))2( [Eq. ] into Eq. @ yields a cubic equation for vy in terms of v, p3, Ao, A3, A4,
X5, My, and Ms. With vy (and hence vy) in hand, Eq. can be used to eliminate ;3 in terms of the
parameters in the previous sentence together with A\;. We illustrate below how A; can also be eliminated
in favor of one of the custodial singlet Higgs masses my, or mpy [see Eq. ]

The physical field content is as follows. The Goldstone bosons are given by

Gt = cyot +sy

GY = e’ +sux™, (10)



where

(11)

The physical fields can be organized by their transformation properties under the custodial SU(2) symmetry
into a fiveplet, a triplet, and two singlets. The fiveplet and triplet states are given by

U¢ . 2\/§UX
cg =cosfy = —, sy =sinfy = .
v v

HIt =y,
Hg— _ (X+\;§€+) :
HY = ;50 - \/gx‘“,
HY = —spo™+ CH(XJF\;F;JF),
H) = —sgé® +cgx™. (12)

Within each custodial multiplet, the masses are degenerate at tree level. Using Egs. (8H9) to eliminate 13
and u%, the fiveplet and triplet masses can be written as

M 3
2 1.2 2 2
mg = o, vy + 12Mavy + 2)\51)(]5 + 8A3vy,
M A M A
9 1, 9 2 5, 9 2y _ 1 5 .2
ms = @(% + 8vx) + 3(% + 8UX) = (4Ux + B ) v (13)

Note that the ratio M /v, is finite in the limit v, — 0, as can be seen from Eq. @ which yields

My 4

The two custodial SU(2) singlets are given in the gauge basis by

0 0,
Hl = ¢ 717

1 2
HY = \/>0 \/> Or, 15
1 35 + 3X (15)

These states mix by an angle a to form the two custodial-singlet mass eigenstates h and H, defined such
that my, < my:

h = cosaHY—sinaHY, (16)
H = sinaHY +cosaHY,

and we will abbreviate ¢, = cos «, s, = sina. The mixing is controlled by the 2 x 2 mass-squared matrix

M3, M3
M2 — ( 11 12 ) , 17
My M, i)

where

M3 = 8\,

V3
M3, = 5 Ve [—M1 +4(2X2 — Xs5) vy,
2 Ml”(% 2
MQQ = 4U — 6M2UX + 8 ()\3 + 3)\4) ’UX. (]_8)
X



The mixing angle is fixed by

. 2M2
Sin 20[ = 27122,
my — my
M2, — M2
cos2a = %, (19)
My —my,

and is chosen to be in the range a € (—m/2,7/2], so that cosa > 0. The masses are given by

1
mp g = 5 [M% + M3y F \/(M% - M%z)z +4 (M%z)ﬂ : (20)

It is convenient to use the measured mass of the observed SM-like Higgs boson as an input parameter.
The coupling A; can be eliminated in favor of this mass by inverting Eq. :

2 (M%2)2 ] . (21)

Al = my + ———
h 2 2
Mszy —my

1
Q2
8v¢

Note that in deriving this expression for A;, the distinction between my and my is lost. This means that,
depending on the values of u% and the other parameters, this (unique) solution for A\; will correspond to
either the lighter or the heavier custodial singlet having a mass equal to the observed SM-like Higgs mass.

2.3 Yukawa sector

Fermion masses are generated through couplings to the complex doublet ¢ = (¢T, ¢") in the same was as
in the SM. We neglect neutrino masses. The relevant Lagrangian terms are

3 3
L= Y [yzyjﬂRinTQLj + yzddeid)TQLj} + i lri¢"Lii + hoc., (22)
i=1 j=1
where 7, j run over the three generations and qg = jo2¢*. The custodial singlets and triplet contain an
admixture of ¢, and so couple to fermions. The custodial fiveplet states do not couple to fermions.
The Feynman rules for neutral scalars coupling to fermion pairs are given as follows:

W - M cosoz’ HS - M sma?
v cosfyg v cosfyg
Hgau: %tanﬁH%, Hng: —@tanegfyg,. (23)
v v

Here f denotes any charged fermion, u stands for any up-type quark, and d stands for any down-type
quark or charged lepton.

The Feynman rules for the vertices involving a charged scalar and two fermions are given as follows,
with all particles incoming:

ngﬂd : —iV/2V, 4 tan O (%PL - %PP) )
Hi*du : —iV2V} tan Oy (%PR - %H) ;

H;'ﬂﬁ : iﬂtan&H%PR,

Hi* v iV2tan GH%PL. (24)

Here V,,4 is the appropriate element of the Cabibbo-Kobayashi-Maskawa matrix and the projection oper-
ators are defined as Pr, = (1 £75)/2.



3 Theoretical constraints

3.1 Tree-level unitarity

We implement the conditions for unitarity of tree-level 2 — 2 scalar particle scattering amplitudes computed
in Refs. [9, B]. These were computed by imposing |[Reag| < 1/2 on the eigenvalues of the zeroth partial
wave amplitude coupled-channel matrix, and read

\/(6)\1 — T3 — 11/\4)2 + 36)\% + ’6)\1 + TA3 + 11)\4‘ < A,

\/(2)\1+)\3—2/\4)2+>\g+‘2)\1 —)\3+2)\4‘ < 4,
12A3 + \4| <
’)\2 — )\5‘ < 2. (25)

3.2 Bounded-from-below requirement on the potential

We implement the conditions that ensure the scalar potential is bounded from below as computed in
Ref. [3]. They read as follows:

1
—7)\3 for /\3 > 0
3 )
A { -3 for A3 < 0,
%)\5 — 24/ M (%/\3 + )\4) for A5 > 0 and A3 > 0,

A2 > 4w (OXs — 2¢/ A1 (Chs + M) for A5 >0 and A3 < 0, (26)
w,(C))\5 — 2\/)\1({)\3 + )\4) for A5 < 0,

o w0 =ga-m =L u-m) (3+n)]" 7
with
B= ;<g—§) c[0.1] (28)

The last two conditions for A in Eq. must be satisfied for all values of { € [%, 1]. We implement this
through a 1000-point scan over ( in the specified range.

3.3 Absence of deeper custodial symmetry-breaking minima

Finally, we implement a check that the scalar potential possesses no custodial symmetry-breaking min-
ima that are deeper than the desired custodial symmetry-preserving minimum, following the procedure
described in Ref. [3]. We write the scalar potential as

2 2
V= %cﬂ + %zﬁ At + Aaa2b? + CAgb* + Agbt — wAsa2b? — o Mia®h — pMab?, (29)

where a? = Tr(®T®) and ? = Tr(XTX) and the dimensionless coefficients ¢, w, o, and p vary with varying
triplet field configurations. The minimum of V' is always traced out by the path [3]

1

¢ = §sin40+cos49,
1., 1

w = -—sin“f+ —=sinfcosh,
4 V2



1 1
o = sinf + —cos 0,

2V2 4
p = 3sin®6fcosb, (30)

with 6 € [0,27). Our desired electroweak-breaking and custodial SU(2)-preserving vacuum corresponds
to § = cos™'(1/4/3). The vacuum 6 = 7 + cos~'(1/+/3) is also acceptable; it corresponds to negative
b. The depths of these vacua are determined by applying the minimization conditions and solving the
resulting cubic and quadratic equations to determine the values of @ and b that minimize the potential,
then evaluating V' at this minimum.

This procedure is then repeated for other values of 6 [corresponding to vacua that spontaneously break
custodial SU(2)] using a 1000-point scan over 6 € [0,27). Parameter points fail this check if any vacuum
solution exists in which V' is lower than the value in the desired vacuum.

4 Indirect experimental constraints

Indirect constraints from the S parameter, b — sy, and B? — utp~ are implemented in the code. A
detailed physics description is given in Ref. [4]. Currently the constraint from b — s7 is stronger than that
from BY — pu~, but that may change in the next several years as more data is collected at the CERN
Large Hadron Collider.

4.1 S parameter

When the new physics is not light compared to My, the S parameter can be written in terms of the
derivatives IT'(0) = dII(p?)/dp?|,2—o of the gauge boson self-energies as

4s%.c? Gy =S¢
5= B [y, 0) - ey, o) 11, o). )

The new physics contribution in the GM model, relative to the SM for a reference Higgs mass m5™, is [4]

2 2 2
§ - SWCW{ e

= T o~ (logm3 + 5logm3) + 2|9z, fi(mp, ms)

B IQS%VCW

200519 S (mir,ms) +2 (19210 g + 2197122 i+ 2) 1 (ms, m)

o [ fi(Mz,mp) o [filMz, mp)
T2 Mh) (M JREZ ) g
+9z2n] [ N2 I3( Z7mh)} + |9z2H| [ N f3(Mz,mp)
o [ f1(Mz,m5)
+’922H§’ [2M§ —f3(Mz,m5)]
fi(Mw,ms
+2’gzw+Hj*’2 ( 2 ) — [3(My,ms)
3 202,
fi(Mz,m3M)
o [P — par i)} (52)
A
where
5(mg — m?) + 27(m‘11m§ — m%m%) + 12(m? — 3m%m%) logmy + 12(3m%m‘2l — mg) log mo
fl(m17m2) = 2 2 s
36(mi —m3)3
mi —m3 + 2m2m3 (logm2 — logm?
fa(mi,mg) = ——— 122( o ) (33)

2(mg —m3y)?



2
For numerical stability we use an expansion in € = 3 — 1 when m? ~ m2 to within a part in 1074,
my
1 9 € 1 €
mi,me) >~ —logm7i + —, my,mo) >~ ——s — —. 34
filma,ma) = G log 12 Jalma,ma) = Gl = o2 (34)
The couplings that appear in Eq. are given by [3]
,\/§e<v¢+\/§vx> ,\/56(%\/311,()
= —iy/= Sa— Ca— =4/ = Ca— — V35
9zhH3 3swew \ T 9zHH; 3swew \ T w Yo/’
_ o te v __ ¢ Y%
9z = U 3swew v IzuiHf" ~ 2swew v
s (o= o) TAGR T
ZZh 59 9 |GV — —=8alx |, ZZH = 55 5 | SaV —7=Caly |,
9 252, ¢2, e NG 9 252, ¢2 e NG
8 €2 2¢?
92zH) = _\/QS%VC%VU)O 9w+ = _CWS‘Z/VU)O (35)
and the SM coupling g%l\é[h is given by
2
SM e v
9770 = 53 3 - (36)

QS%VC
We use s, = sina, ¢, = cos «a, and similarly for the sine and cosine of the weak mixing angle.
For a reference SM Higgs mass of m;Q’LM = 125 GeV and setting U = 0, the global electroweak fit
yields [10]
Sexp = 0.02 £ 0.07, Texp = 0.06 £ 0.06, (37)

with a correlation pgr = +0.92. These values (MHREF, SEXP, DSEXP, TEXP, DTEXP, and RHOST, respectively)
are hard-coded in the subroutine INITINDIR in /src/gmindir.f.
We compute the x? according to

2= 1 (S = Sexp)? | (T —Texp)® 2957 (S — Sexp) (T — Texp)
(1-027) | (ASep)®  (ATinp)? ASexp ATy

; (38)

where ASeyp, and ATy, are the 1o experimental uncertainties.

It is well known that the one-loop calculation of the T' parameter in the GM model yields a divergent
result due to the explicit breaking of the custodial symmetry by hypercharge gauge interactions [11]. In
a proper treatment 7' acquires a counterterm, which must be set, e.g., by specifying the energy scale at
which the custodial symmetry in the scalar potential is exact. Here we take the conservative approach of
marginalizing over T', which amounts to setting

ATy
AS, exp '

T = Texp + PST(S - Sexp) (39)

We set the flag SPAROK = 1 if the GM prediction for the S parameter yields x? < 4, and SPAROK = 0
otherwise.

4.2 b— sy
The current world average experimental measurement of BR(B — X,7), for a photon energy E, > 1.6 GeV,
is [12]

BR(B — Xg7)exp = (3.55 4 0.24 +0.09) x 10~ (40)

To evaluate the constraint from this observable, we calculated the GM model predictions for a grid of
(m3,vy) values by adapting the implementation for the Type-I 2HDM in the code Superlso v3.3 [13]



(which makes use of the code 2HDMC v1.6.4 [14]). Our choice of input parameters yields a prediction in
the limit v, — 0 or m3 — oo of

BR(B — Xs7)sMlimit = (3.11 £0.23) x 107, (41)

where the theoretical uncertainty is taken from Ref. [I5]. We scale the theoretical uncertainty by the
ratio BR(B — Xsv)am/BR(B — Xsv)smumit before combining it in quadrature with the experimental
uncertainties.

The two data files /src/bsgtight.data and /src/bsgloose.data contain two sets of points (ms, vy) corre-
sponding to the contour at which BR(B — Xsv)am = 2.88 x 107* (“tight” constraint) and 2.48 x 1074
(“loose” constraint), respectively. These correspond to a 20 deviation from the experimental central value
(“tight”) and a value 20 “worse” than the SM prediction (“loose”). For further explanation, see Ref. [4].
Model points are checked for consistency with these constraints by linearly interpolating the upper bound
on v, to the appropriate mass m3. For m3 < 10 GeV the limit on v, for mz = 10 GeV is used, and for
mg > 1000 GeV the limit on v, for ms = 1000 GeV is used. (This latter limiting value falls outside the
parameter range allowed by theoretical constraints, and so is irrelevant in practice.)

We set the flag BSGAMTIGHTOK = 1 if the GM prediction for BR(B — X,v) satisfies the “tight” 20
constraint, and BSGAMTIGHTOK = 0 otherwise. Similarly, we set the flag BSGAMLOOSEOK = 1 if the GM
prediction for BR(B — Xv) satisfies the “loose” 20 constraint, and BSGAMLOOSEOK = 0 otherwise.

4.3 B — utp”

The time-averaged branching ratio for B — p*u~, normalized to its Standard Model value, is given to
an excellent approximation by the ratio of Z-penguin contributions [4] [16]

2

nR 0 +,,— SM GM
RBSMM = ER(BS — ) o~ 'Clo _‘S_MClO , (42)
BR(BY = ptp)sm Cio
where [16] . oo
M, P g (Mz)1™"
CSM = —0.9380 ¢ a 43
10 [173.1 CeV 0.1184 (43)
and [4, [16]
log 43
CCGM _ oSM | ;.29 Ttw Tt3 xt3 A4

with zy = M3 (M) /M3, and x4 = M3 (My)/ m%ﬂ For numerical stability we use an expansion in § = z;3—1
when 23 ~ 1 to within a part in 1074,

Zt3 3 log xts] o

o
1— 13 (1 — thg)z - 6 (6 = T3 — 1— 0) (45)

1
2

The corresponding SM prediction and its uncertainty are [16]

2
o M, L83 1o (M) ]~
BR(B? — ptp )sm = (3.67+0.25) x 1079 | | o — 2 46
(By = w7 s = ( ) x 1731 GeV 0.1184 (46)
We calculate the prediction in the GM model by scaling this prediction and its uncertainty by RBSMM.
The current world average experimental value (from CMS and LHCD) is [17]
BR(BY = " i Jexpt = (2.94£0.7) x 1077, (47)

2The calculation of the MS running top quark mass 7 (x) is described in Sec. M, is the pole mass.

10



The experimental central value (BMMEXP) and its uncertainty (DBMMEXP) are hard-coded in the subroutine
INITINDIR in /src/gmindir.f.

Combining the theoretical and experimental uncertainties in quadrature, this measured value is about
lo below the SM prediction. The GM prediction is always higher than the SM prediction (in worse
agreement with experiment) and depends only on the parameters ms and tan 6p.

We set the flag BSMMOK = 1 if the GM prediction for BR(BY — ™) is within 20 of the experimental
value, and BSMMOK = 0 otherwise.

5 Decays

Starting from the tree-level masses and couplings, the code calculates the decay widths of the Higgs bosons
into various final states. At tree level the Higgs bosons can decay into pairs of fermions, pairs of massive
gauge bosons, a gauge boson and a lighter Higgs boson, and two lighter Higgs bosons. Decays of the neutral
Higgs bosons into gg, vv, and Z+ are induced at one loop.

51 H— ff

The custodial singlet states h and H and the custodial triplet states HY and HgE can decay to pairs of
fermions. The custodial fiveplet states do not couple to fermions.

The Feynman rule for a scalar coupling to ff is parameterized as i(¢g° + g*’vs5), where g° is the scalar
part and ¢¥ is the pseudoscalar part. ¢° and ¢g” can be simultaneously nonzero only for charged Higgs
couplings to fermions.

The decay width to fermions is given by (the number of colors N, = 3 for quarks and 1 for leptons)

Nempy

D(H = []') = ~5"

{[1 = (21 +22)?] 1g°17 + [1 = (21 — 22)°] 1g" P} A2 (2, 23), (48)
where 1 = mys/mpy, o = myp /mpy, and the kinematic function A is given by
Aa,y) = (1 -z —y)? —day. (49)

For scalar decays to quarks, we incorporate the QCD corrections as follows. First, we incorporate the
leading QCD corrections by replacing m, — i, (M) in the Yukawa couplings g° and g¥, where 7, (Mp)
is the MS running quark mass evaluated at the scale of the parent Higgs particle’s mass. We compute the
running quark masses using [18]

_ _ clas(p)/m
(i) = (M) S (50)
where
95 \ 12/25
c(r) = <6x> (1 + 1.0142 + 1.389z%), M. < p < M,
93 \ 12/23
c(x) = <6x> (1+ 1.175z + 1.501z2), My, < p. (51)

The running strong coupling constant is computed using [1§]

(153 — 19N;) loglog(u? /A% )
(33 —2Ny)?  log(u?/A%;,)

a(Nf)(u) _ 127
’ (33 — 2Ny) log(12/A%;,)

1-6 (52)

We implement matching at the bottom quark threshold by requiring continuity of az. Above the top
threshold we continue to use the five-flavor scheme for consistency with HDECAY [23].

11



Second, for decays of neutral CP-even scalars to bb or c¢ we incorporate the finite QCD corrections by
multiplying the partial width given above by the factor [I§]

[Agcp + A, (53)

where

(M S(Mp)\*
Agep = 1+ 5.670‘(7TH) + (35.94 — 1.36N) (O‘(H)> :

™

™

. (OM)Q [1.57_ glog(M%/Mtz) i ;10g2(m§(MH)/M12-1)} : (54)

The relevant SM inputs to GMCALC are
ALSMZ = as(My),  MTPOLE = M;,  MBMB = mmy(my),  MCMC = mm.(my). (55)

The values are set in INITIALIZE SM in /src/gminit.f. The b and ¢ quark pole masses, and the running
top quark mass, are obtained using the O(«) relation [18]

mg(My) = Mg/[1 + 4as/3m]. (56)

5.2 H— ViVy

The custodial singlet states h and H, as well as the neutral custodial fiveplet state H?, can decay to
WHW~ and ZZ. The charged custodial fiveplet state H; can decay to WTZ. The doubly-charged
custodial fiveplet state H, gr * can decay to WHWT. The custodial triplet states do not couple to pairs of
massive vector bosons.
The Feynman rule for a scalar coupling to massive vector bosons V{*V} is parameterized as igm,1; v, 9" -
We compute the widths for H; — V1 V5, allowing both vector bosons to be off-shell, using [19} 20]

2

*Y 7k 1 H, 2 (mHi_Ql)Z 2
e N T | 103

Q% FV1/]\4V1 Q% FVz/Mvz H;W1 Vs 2 N2
X | R 2(@ 7Q )7 (57)
(QF — M )% + MPTY, (QF — M) + My T, ne

where I'y; is the measured total width of gauge boson V;, Q? is the square of the four-momentum of V;, and
FHiVlVQ(Q%, Q%) is the on-shell decay width for H; — V1V, with the squared-masses of the gauge bosons
Vi and V5 replaced by Q% and Q3. This on-shell width is given by

_ 2,3
W [1— 2k — 2y + 10k kg + k3 + k2] AY2(ky, ko), (58)
where k1 = Q%/m%ﬂ and ko = Q%/mfﬂ Here Sy is a symmetry factor given by Sy = 1 if V; and V,
are distinct bosons (e.g., WTW~ or ZW™*) and Sy = 1/2 if V; and V; are identical bosons (e.g., ZZ or
W*+W). The kinematic function X is defined in Eq. (49).

We evaluate the doubly off-shell decay width using numerical integration. Below threshold (mp, <
My, + My,) we integrate Eq. using an implementation of the Vegas algorithm [21I] borrowed with
permission from PROSPINO [22]. Above threshold (mp, > My, + My,) we use 16-point Gauss-Legendre
integration after making the change of variables

PR (QF, Q3) = Sy

pi = —tan™

p [Q’? ’ Mé] (59)

My, Ty,
to flatten the Breit-Wigners. The number of integration points is optimized for efficiency above and below
the H; — V41V5, threshold, while keeping the numerical precision within 1% of the value computed by

HDECAY 6.42 [23].
We have not taken into account the interference effects in same-flavor decays due to crossed diagrams.
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5.3 H1 — VH2

The custodial singlet states h and H can decay to a vector boson plus a custodial triplet scalar. The
custodial triplet states H. g and H. g: can decay to a vector boson plus a custodial singlet state, or to a vector
boson plus a custodial fiveplet state. The custodial fiveplet states H, 50 , H, 5i, and H gbi can decay to a vector
boson plus a custodial triplet state.

The Feynman rule for the Hy H3V); coupling (all particles and momenta incoming) is parameterized as
igv+H, Hy (P1 — P2)u, Where p1 (p2) is the incoming momentum of the scalar Hy (H3).

The on-shell two-body decay width into one vector and one lighter scalar is given by

\gvem, g PME [y, mi ME mi
[(Hi = VHy) = =g —=X Mé,Mg e e (60)
1

Here V' denotes one of the gauge bosons Z, W, or W™, such that the decays H — W*TH~ and H° —
W~H™ are distinct.

We also implement H; — V*Hy decays (with the gauge boson off-shell) when the H; mass is below
threshold for the on-shell two-body decay. Following Ref. [24],

3|gvepy my P MGm,

167302
where again V denotes one of the gauge bosons Z, W, or W, such that the decays H — W+H~ and
HO — W~ H* are distinct. dy and 6z are given byf|

3 7 10 40
Sr — = 0, =3 — — —s% 4+ —st ). 62
w=5 z=3 (12 9 sy + 273W) (62)

F(Hl — V*HQ) = 5\/ GH2v, (61)

The kinematic function Gj; is defined as follows (here we fix a typing error in Ref. [24] as pointed out in
Ref. [25]: the last term is +2);;/k; rather than —2X;;/k;):

o 1 ' ‘ — |7 k?j(l—k‘j—l-k‘i)—/\ij
G’Lj - 4 {2(_1 + k’] - kz) V )‘U 2 + arctan ( (1 — ]{Z>\/Tw
25
+()\z’j — Qki) log k; + %(1 — k‘z) |:5(1 + ]'Cz) — 4k; + ];\J:| } , (63)
J

where k; = kpy, = m%&/m%{l, ki =ky = M‘%/m%h, and

)\ij =—1+42k; + 2/{7j — (k‘z — k‘j)Q. (64)

54 H; — H2H3

The custodial singlet states h and H can decay into a pair of custodial triplet states or a pair of custodial
fiveplet states. Furthermore H can decay into hh. The custodial fiveplet states H50, H5i, and Hgti can
decay into a pair of custodial triplet states. The custodial triplet states cannot decay into pairs of scalars
due to a combination of custodial SU(2) invariance and Bose symmetry.

The Feynman rule for the HyHj H; coupling (all particles incoming) is parameterized as —igi23.

The decay width for H; into two lighter scalars Ho Hg is

2
I'(Hy — HyH3) = SHM/\UQ(XLX?))’ (65)
167rmH1

where Xy = m%,z /m%,1 and X3 = m%h/m%h, and Sg is a symmetry factor given by Sy = 1 if Hy and Hg
are distinct bosons and Sy = 1/2 if Hy and Hs are identical bosons.

3We absorb the factor of cj;; that appears in the denominator of 8z in Eq. (36) of Ref. [24] into the coupling. We also
separate out a symmetry factor of 2 from dw for convenience.
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5.5 H — vy

Neutral scalar decays into two photons proceed through a loop of charged particles. The width is given

by [26]
2 3
QM
D(H — — YEMH | pvv2 66
( 77) 2567312 | H | ) ( )
where apys is the electromagnetic fine-structure constant, v = (v/2G p)_l/ 2 ~ 246 GeV is the SM Higgs
vacuum expectation value, and A}] represents the sum of the loop amplitudes for initial particle H.
For an initial scalar (S = h, H, or H, g), the amplitude receives contributions from fermions, W bosons,
and charged Higgs bosons (ng, H;, and H5++) in the loop, and is given by

AL =63 NegQiFy jo(s) + iy Fi(tw) + Y B85 Q2Fo (7). (67)
! s

For the fermion loops, N.s and @)y are the number of colors and electric charge in units of e, respectively,
for fermion f, and /@3? is the scaling factor for the coupling of S to fermions relative to the corresponding
coupling of the SM Higgs boson, defined in such a way that the Feynman rule for the Sff coupling is

—i(mg/ v)K7 7. The custodial fiveplet does not couple to fermions, so & f5 = 0. In the code we include only
the top quark loop.

For the W loop, /{ﬁ/ is the scaling factor for the coupling of S to W pairs relative to the corresponding
coupling of the SM Higgs boson, defined so that the S W; W, Feynman rule is if@ﬁ;@MﬁV /) G-

For the scalar loops, the sum over s runs over all electrically charged scalars in the GM model (H. ;“ ,
ng, and H5++) Qs is the electric charge of scalar s in units of e, and 35 = ggssv/2m2. The coupling
gsss+ 1s defined in such a way that the corresponding interaction Lagrangian term is £ D —ggss+Sss™.

The loop factors are given in terms of the usual functions [26],

Fi(t) = 2+4374+37(2—1)f(7),
Fip(r) = =211+ 1 =71)f(7)],
Fo(r) = t[1=7f(7)], (68)
where )
sin™! 1 it 7
P O VT (69)

~tfog () —in| " ifr <1,

with n+ =1+ +/1 — 7. The argument is 7; = 4m12/m,%
For an initial pseudoscalar (A = H:?), the amplitude receives contributions only from fermions in the
loop, and is given by

AV = k7D N QFF)o(7s) (70)
!

where the Feynman rule for the Aff coupling is defined as —(m ¢/ v)n?% and the loop function is
Ff)y(r) = =27 (7). (71)

In the code we include only the top quark loop.

56 H — gg

Neutral scalar decays to two gluons proceed through a loop of colored particles. In the GM model, the
only colored particles are the SM quarks. Therefore this decay occurs only for A, H, and Hg (the custodial
fiveplet does not couple to fermions).
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The width is given by [26]
a2m?,
1287302
where A?f represents the sum of the loop amplitudes for initial particle H.
For an initial scalar (S = h or H), the amplitude is

AY = K?Zﬂﬂ(ﬂ‘)- (73)
f

I'(H — gg) = A%, (72)

For an initial pseudoscalar (A = HY), the amplitude is
AY = Ky ZF1/2 Tf)- (74)

We incorporate the QCD corrections as follows. First, we evaluate oy in the leading-order amplitude
at the scale of the parent particle’s mass. Second, for the decays of CP-even neutral scalars, we multiply
the leading order amplitude by the factor [I§]

[1 + BN ol ] (75)

where
Efo%_Z -+ 33—2]\7f1
4 6 6

and we use Ny = 5 throughout, consistent with NF-GG = 5 in HDECAY [23].
In the code we include only the top quark loop.

og(1® /M), (76)

57 H— Zvy

Neutral scalar decays to Z plus a photon proceed through a loop of charged particles. The width is given
by [26]

m3 M2\*?

Z

0t - 2) =SB (1- 22 (77)
H

where Afﬂ represents the sum of the loop amplitudes for initial particle H.
For an initial custodial-singlet scalar (S = h, H; see below for H 59), the amplitude is

v
AG = KFA; + Y Aw + S As, (78)
where the contributions from fermions, W bosons, and scalars are given by [26]

—2Q; (T}"L — 2Q; sin? ew)

A = Zf: Neg sin Ay cos Oy I (7 Ap) = Ia(7y, )‘f)] ’
2 2 2 2
Aw = —cotby 4(3—tan ew> Iy (tw, A\w) + 1+ — Jtan“ 0w — 5+ — || [1 (7w, A\w) ¢,
A, = 229555 CZss Qs I (7_57 )\S) . (79)

Here T3L +1/2 is the third component of isospin for the left-handed fermion f. In the code we include
only the top quark loop. The scalar amplitude depends on the coupling Cyzss+ = gzss+ /€ of the scalar
to the Z boson, defined in such a way that the corresponding coupling of the scalar to the photon is
Cysst = Gyss=/€ = Q5. The sum over scalars in Ag runs over ng, H;, and H;Jr.
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The loop factors are given in terms of the functions [26]

ab a’b? a’b
Il(aa b) = 2(@ - b) + 2(CL - b)2 [f(a) - f(b)] + (a _ b)2 [g(a) - g(b)] )
hlah) = 5 @) = F0). (50)

where the function f(7) was given in Eq. and

vi=Tsin ! (/1) if 7> 1,

WI=7[log () —in]  ifr<1, (B

g(r) =

with 74 defined as for f(7). The arguments of the functions are 7; = 4m? /m? as before and \; = 4m? /M32.
For an initial pseudoscalar (A = HY), the amplitude is

—2Q; (T]?L — 2Q; sin? ew)

sin Oy cos Oy

AL = k7 Z Ny [~ Ia(rs, Ap)]. (82)

Again in the code we include only the top quark loop.
For an initial custodial fiveplet scalar (S = HY), the amplitude is [5]

2mv

v
Ag'y = K/SVi/AW + §AS — [2AWH5H5 + 2AH5WW] ) (83)

em

where Ay and Ag were given in Eq. . The amplitudes from loops involving a W boson and an ch
scalar are [5]

3 v
AWH5H5 = 2« 2 \/73X [012 4+ C +2C1 + 3C + 2C0] (M%,O,mg; M‘%V,mg,mg),
2 sin” By cos Oy

3
Agww = agm\f_ - Ux [—2C15 — 2C9y + 4C) 4 2Co) (M2,0, m2;m2, M2, M%),  (84)
2 sin GW COS 9W

where Cj, C;; are LoopTools functions [27].

5.8 H— Wy
Singly-charged scalar decays to W plus a photon proceed through a loop. The width is given by [5]

PO = Wa) = P [y Miv (1 AnP + 1Anl?
H

where Ay and Ap represent the CP-even and CP-odd parts of the sum of loop amplitudes for initial
particle H.

For an initial custodial-fiveplet scalar H = H, gr , the CP-odd part Ay is zero, and the CP-even part of
the amplitude is

AH = Z ASlSQSQ + Z AXss + Z AsXX + AZWW~ (86)

5182 Xs sX

The scalar loop contribution is given by [5], 26]

o' 1
A815252 = 7%QSQCH;'5T32CW_8185W‘ll(TS’ >‘S)v (87)
s
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where I (a, b) was given in Eq. , and the sum runs over s;s2 = HYH; , HYH: , Hy Hy ~, and HY T HZ",
with masses ms, = ms, = ms. The products of couplings that appear are

Qu-Curnon-Cw-nymr = _ﬂvslinew [2(As — 2X5)v3vy — 8AsVS + 4My0F + 3Mpu3] , (88)
QHg CH;HgHg CW-HgHg = _\/ES:)MV(Q)\SUX — My), (89)
QHg* CH;H;H; CW-H;ztls++ = = siGn\éi/ (2A30y — Mp), (90)
QH;CH;H;*H;va—H;Jng = _an\gi/ (2A3vy — Mp). (91)

The remaining pieces of the amplitude are given by [5]

Axss = QngQsC)(*HJSCs*XW_ [012 4+ Cy +2C1 + 3C5 + 200] (MI%V, 0, m%; M)Q(, m%, m%), (92)

Axx = 0guQxCxyr o Coxnw- [2C12 — 2022 + 4C1 + 20s] (M, 0,m3sm3, My, M), (93)
2
Agww = _;%‘ sin O My My cot Oy [(12012 12C0s + 1205 + 6C) + %(Om + Oy + Cs)
w
2
+i7W(Clz + Uy +2C1 + 305 + 200)] (M, 0,m3; Mz, Mgy, Miy), (94)
w

where Cj;, Cj; are LoopTools functions [27]. For the vector-scalar-scalar loop Axss the sum runs over
Xs=ZH;,W~H; ", and the products of couplings that appear are

_ Ux g2
Qu-Czuru-Curzw- = 2 By cos? By (1 —2sin” Oy ), (95)
2v/2v
QHg*CWJrH;Hg*CH;*W—W— = " sin3 9;;‘ (96)

For the scalar-vector-vector loop Agxx the sum runs over sX = H50W_, H5Jr TW*, and the products of
couplings that appear are
Ux

Qw-CwmmgCrgww- = 5o (97)
V20,
QW+CW+H;H5*CH;+W—W— - sin® Oy (98)

For an initial custodial-triplet scalar H = H; , the CP-odd part of the amplitude comes from loops
involving top and bottom quarks and is given by [5]

Odernzvc“/tb‘2

AH = 713&119[{ {Qb [_m?(01 +02+00) —{—mZ(Cl —1—02)] (M‘%V’O’mg’m?’mg,mg)
2mv sin Oy
+ Q¢ [-mi(C1+ Co + Co) + mi (C1 + Co)| (M, 0,m3;my, mi, mi)} (99)
while the CP-even part of the amplitude is given by
An = Af+ZA815282 +ZAXSS+ZASXX- (100)
5182 Xs sX

The fermion loop contribution is (we again include only the contribution from top and bottom quarks)

emNc V 2
Ap = M tan 07 {Qp [m7(2C12 + 2Ca2 + 3C3 + C1 + Cy)
27 sin Oy

—mj(2C12 + 205 + Cy — C1)] (M, 0,m3; mf, mj, mj)
+Q¢ [—mg(?Clg +2C9% + 3Cy + C1 + C))
+mj (2C12 + 2039 + Co — C1)] (M, 0, m3; my, mi, m7) } . (101)
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The remaining pieces of the amplitude are given by [5]

«
A815282 = _%QwCHé"STSQCW—sls; [012 + C'22 + 02] (MgV’ 07 m%; m§17m§2’m§3)’ (102)
Axss = 2a2,QsCy. 155 Csxw— [Cr2 + Ca2 +2C1 + 3C + 2Cy
mzzs - mg 2 2. 272 2 2
+ iz (Cr2 + Caa + Ca) | (Myy,0,m3; M5, ms, ms), (103)
X
Asxx =:<ﬁmQXC}H;ﬁCMvW—PQCn**ﬂ%2+4C1+2CQ
m% - mg 2 2. 2 22 2
-2 iz (Cr2 + Ca2 + Ca) | (Mg, 0, m3;mg, M5, Mx), (104)
X

where C;, C;; are LoopTools functions [27]. For the scalar loop As,s,s, the sum runs over s;sp = hHj ,
HH, HQHQ, HgHg, H;JFH;, H3 Hy ~, and the products of couplings that appear are

2 (V3cavy + Sa
Qu Crtnm; Cw-puy = _£ (vie U?C Fals)
3 3 Nl 3 3 v3 sin Oy
X {—Sa [8()\3 + 3\ + )\5)1)3)%< + 16(6/\2 + )\5)’Ui + 4]\411)3< — GMQ’U%]
—|—\/§Ca [(4)\2 — )\5)1}2 + 8(8)\1 + A5)U¢U>2< + 4M11]¢UX] } (105)
c B V2 (\/gsavx — Calg)
QHi; Hy HHy “W-HHi = "3 3gin 6y,
x {ca [B(A3 + BAa + A5)v3vy + 16(6A2 + As)vd + 4M1v2 — 6Mov]]
+\/§Sa [(4)\2 — )\5)1]3) + 8(8/\1 + )\5)’U¢’Ui + 4M1’U¢UX] } , (106)
v
Qu; Coynon; Cw-moy = m [2(A3 — 2X5)v3vy — 8A50S + AMv2 + 3Mpv3],  (107)
v
Qu: CusmomCw-momr = _Wﬁrﬁw [2(A3 — 2X5)v3vy — 8AsVS + AMy07 + 3Myv3],  (108)
\/5% 2 3 2 2
QH;FCH;HS”H;CW*H;JFH; = —m [2()\3 - 2)\5)U¢UX - 8)\5’UX + 4M1UX + 3MQU¢] , (109)
2v/20
Qu--Crinin—Cuwppit = — = [2003 — 205)020y — 8A502 + AMy02 + 3My0?)] . (110)
5 3 Hz Hs 3 Hs v3 sin Oy ¢ X X ¢

For the vector-scalar-scalar loop Axgs the sum runs over Xs = ZH;, W~ Hy ~, and the products of
couplings that appear are

UpUx
Coi O - , 111
QHs ZH Hy = Hy ZW V2v sin® Oy cos? Oy (111)
2ﬂv¢vx
Quiy=Cwrn s~ Cuprw-w- =~ q3g (112)

For the scalar-vector-vector loop Asxx the sum runs over sX = hW—, HW ™, HgW_, H5++W+, and the
products of couplings that appear are

Qw-Cy— g nCrw+w- = M(ﬁcavx + 5a08)(—8540y + V3cavy), (113)

Qw-Cyw- g yCrw+w- = M(\@savx — ¢a4)(8caty + V3540), (114)
Qw-Cy- g poCngw+w- = _3\[22211)(391/[/’ (115)
Qw+Cpsprn—Crow w = m (116)
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6 Using the GMCALC program

The GMCALC code package is available for download as a .tar.gz file from the web page
http://people.physics.carleton.ca/~logan/gmcalc/

The package includes this manual. Feature requests and bug reports should be sent to Heather Logan at
logan@physics.carleton.ca .

If the decays of HY — Z~, ch — Wy, and HgE — W~ are to be computed, the user must also
install the LoopTools package [27] (tested with LoopTools 2.15), which is available from

http://www.feynarts.de/looptools/
The makefile for GMCALC specifies the path to the LoopTools installation, e.g.,
LT = $(HOME)/Documents/work/looptools/LoopTools/x86_64-Darwin

This should be updated to reflect the user’s system. GMCALC can be run without LoopTools, in which
case the partial widths of HY — Z7, HgE — Wy, and H:f — Wy are set to zero.

6.1 Sample main programs provided with the code

Three sample main programs are provided with the code. These can be used as-is, or as templates for the
user to write their own programs. The command

$ make sample

compiles the program sample.f into an executable sample.x using gfortran. The executable is run using
$ ./sample.x

The sample programs are as follows:

e gmpoint.f performs the full set of available calculations for a single parameter point and outputs
the spectrum, couplings, and decay tables to the terminal.

e gmscan.f performs a scan over the allowed parameter ranges using the approach described in Sec.
For each scan point allowed by theoretical and indirect experimental constraints, it writes a selection
of observables to a file scan_output.data.

e gmmg5.f generates the files param_card-L.O.dat and param_card-NLO.dat for use with the leading-
order (LO) and next-to-leading order (NLO) Universal FeynRules Object (UFO) model files, re-
spectively. The NLO UFO model file can be used with the MadGraph5_aMCQ@QNLO framework to
automatically generate Monte Carlo samples at NLO accuracy in QCD. It also generates the file
param_card-EFTLO.dat for use with the LO UFO model file including effective vertices for the loop-
induced couplings hgg, hyy, hZ~y, Hgg, Hyy, HZ~, HYgg, H{yy, HYZ", HgthFv, HYvv, HZ~,
and H, SEWJFV. The corresponding FeynRules model files are available at http://feynrules.irmp.
ucl.ac.be/wiki/GeorgiMachacekModell

To run gmpoint.f, gmscan.f, or gmmg5.f without installing LoopTools, use make gmpoint-nolt, make
gmscan-nolt, or make gmmgb-nolt, respectively. The executables will be gmpoint-nolt.x, gmscan-nolt.x,
or gmmg5-nolt.x, respectively, and in them the partial widths and/or effective couplings of HY — Z7,
ng — Wy, and H;E — W~ will be set to zero.
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6.2 Setting the model parameters

There are currently five choices of input parameters implemented in GMCALC:

e INPUTSET = 1 uses the primary inputs u%, A1, A2, A3, Mg, A5, M, and M. The parameter p3 is set
using the constraint on vi + 8v>2< in terms of Gp.

e INPUTSET = 2 uses the primary inputs u%, Mpu, A2, A3, M, A5, M1, and M. The parameter p3 is
again set using the constraint on vi + 8v>2< in terms of Gp.

e INPUTSET = 3 uses the primary inputs mp, mpg, ms, ms, sinfy, sina, M7, and Ms. G is also used
to set u%.

e INPUTSET = 4 uses the primary inputs my, ms, sinfg, Ao, A3, Ay, M1, and M>. G is also used to
set ,u%.

e INPUTSET = 5 uses the primary inputs my, myg, sin 0y, sina, Ao, A3, A\q, and A5. G is also used to
set ,u%.

These inputs can be hand-coded in the sample programs (indicated by INPUTMODE = 0). Alternatively, the
program can be run in interactive mode (INPUTMODE = 1) in which case the user will be prompted to enter
the inputs at the terminal. In either case, the subroutine LOAD_INPUTS processes the inputs and computes
the remaining potential parameters. LOAD_INPUTS sets a flag INPUTOK = 1 if the specified inputs yield an
acceptable scalar potential.

6.3 Checking consistency and computing the spectrum

Before computing the physical spectrum, the scalar potential should be checked for consistency with
theoretical constraints. This is accomplished by the subroutine THYCHECK, which returns three flags: UNIOK
= 1 indicates that the perturbative unitarity constraints on A;_s are satisfied; BFBOK = 1 indicates that
the scalar potential is bounded from below; and MINOK = 1 indicates that the desired electroweak-breaking
vacuum is the global minimum of the potential.

The physical masses, vevs, and custodial-singlet mixing angle o can then be computed by the subroutine
CALCPHYS. Results are passed via the common block

COMMON/PHYSPARAMS/MHL ,MHH ,MH3 ,MH5, ALPHA , VPHI , VCHI.

They can be accessed directly by adding this common block declaration in one of the sample programs;
alternatively, they can be output to the terminal by the subroutine PRINT_RESULTS (see Sec. [6.5).

With the physical spectrum computed, the indirect constraints can be checked by calling the subroutine
CALCINDIR. This returns a series of flags which, if set to 1, indicate that the model point satisfies the
corresponding indirect constraint. The flags are: BSMMOK (BY — T u~), SPAROK (oblique S parameter),
BSGAMLOOSEOK (“loose” constraint on b — sv), and BSGAMTIGHTOK (“tight” constraint on b — sv). These
can be accessed directly by including the common block

COMMON/INDIR/RBSMM, SPARAM,BSMMOK , SPAROK, BSGAMLOOSEOK , BSGAMTIGHTOK.

They are also output to the terminal by the subroutine PRINT_RESULTS (see Sec. [6.5)). The double precision
variables RBSMM and SPARAM in this common block contain the ratio of BR(BY — u*p™) to its SM value
and the value of the S parameter for this model point, respectively.
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6.4 Computing couplings and decays

Once CALCPHYS has been called, we are ready to compute Higgs couplings and/or decay branching ratios.
There are three subroutines that can be called independently of each other:

e HLCOUPS computes the kappa factors /1? (i.e., the couplings normalized to their SM values) of h.
These are output to the terminal in a tidy form by PRINT_HCOUPS, but can also be accessed through
the common block

COMMON/KAPPASL/KVL,KFL ,KGAML ,KZGAML , DKGAML , DKZGAML.

e HHCOUPS does the same but for H. These are output to the terminal by PRINT_HCOUPS, but can also
be accessed through the common block

COMMON/KAPPASH/KVH,KFH,KGAMH ,KZGAMH , DKGAMH , DKZGAMH.

e CALCDECAYS performs the full set of partial width calculations (see Sec. |5 for all the scalar particles
in the model, as well as for the top quark, which can decay to H;“ b if kinematically allowed. The
resulting branching ratios and total widths are output to the terminal in a tidy form by PRINT_DECAYS,
but can also be accessed through the series of common blocks for each particle as follows:

h: COMMON/HLBRS/HLBRB, HLBRTA, HLBRMU, HLBRS, HLBRC, HLBRT, HLBRG, HLBRGA, HLBRZGA,
HLBRW, HLBRZ, HLBRWH3P, HLBRZH3N, HLBRH3N, HLBRH3P, HLBRHS5N, HLBRH5P, HLBRHS5PP,
HLWDTH

H: COMMON/HHBRS/HHBRB, HHBRTA, HHBRMU, HHBRS, HHBRC, HHBRT, HHBRG, HHBRGA,
HHBRZGA, HHBRW, HHBRZ, HHBRWH3P, HHBRZH3N, HHBRHL, HHBRH3N, HHBRH3P, HHBRHS5N,
HHBRH5P, HHBRH5PP, HHWDTH

]fg:COMMON/HSNBRS/HSNBRB, H3NBRTA, H3NBRMU, H3NBRS, H3NBRC, H3NBRT, H3NBRZHL,
H3NBRZHH, H3NBRZHS5N, H3NBRWHS5P, H3NBRG, H3NBRGA, H3NBRZGA, H3NWDTH
fﬁf:COMMON/HSPBRS/HSPBRBC, H3PBRTA, H3PBRMU, H3PBRSU, H3PBRCS, H3PBRTB, H3PBRBU,
H3PBRWHL, H3PBRWHH, H3PBRZHS5P, H3PBRWHS5N, H3PBRWHS5PP, H3PBRWGA, H3PWDTH
]Yg:COMMON/HSNBRS/HSNBRGA, HS5NBRZGA, HS5NBRW, HS5NBRZ, H5NBRZH3N, H5NBRWH3P, H5NBRH3N,
H5NBRH3P, H5NWDTH

fﬁ?:COMMON/HSPBRS/HSPBRWZ, HS5PBRZH3P, HS5PBRWH3N, HS5PBRH3PN, HS5PBRWGA, HS5PWDTH
f{;*ﬁ COMMON/H5PPBRS/H5PPBRWW, H5PPBRWH3, HS5PPBRH3P, HS5PPWDTH

t: COMMON/TOPBRS/TOPBRW, TOPBRH3P, TOPWDTH

6.5 Outputs

There are three subroutines dedicated to printing results to the terminal:

e PRINT_RESULTS prints the Lagrangian parameters, the flags indicating theoretical consistency and
consistency with indirect experimental constraints, and the physical masses, vevs, and custodial-
singlet mixing angle. These must have been previously computed by calls to LOAD_INPUTS, THYCHECK,
CALCPHYS and CALCINDIR (in that order).

e PRINT_HCOUPS prints the kappa factors for h and H. These must have been previously computed by
calls to the subroutines HLCOUPS and HHCOUPS.

e PRINT DECAYS prints out the decay branching ratios and total widths of all the scalars in the model,
as well as those of the top quark. These must have been previously computed by a call to the
subroutine CALCDECAYS.
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6.6 Parameter scans

To perform scans over the model parameters in an efficient way, the following strategy can be adopted.
Setting my, equal to the observed Higgs boson mass ~ 125 GeV and setting 3 using G, the seven free
parameters are (INPUTSET = 2)

13, Ao, A3, A, As, My, and Mo. (117)

The parameters A3 and A4 are mainly constrained by the unitarity and bounded-from-below conditions.
The allowed range of A3 is

—%7‘( <3< %ﬂ'. (118)
The allowed range of A4 is then
For A3 < 0: A3 < M < <—7)\3 + 27‘1’) ,
11 11
For A5 > 0: —1)\3 << <—7)\3 + 27r> . (119)
- 3 11 11

The parameter Ao is constrained by the first of the unitarity constraints in Eq. . Since we don’t
know Aq until the rest of the parameters are set, we allow it to vary to obtain the least stringent constraint
(which occurs when A; = 0),

1
|Ao| < g\/‘W —271(TA3 + 11)\y). (120)

Note that 0 < (7A3 + 11A4) < 27. Implementing a lower bound on the scan range for Ay from the
bounded-from-below constraint does not dramatically improve the code’s efficiency.
The last of the unitarity constraints in Eq. then constrains

(—27T -+ )\2) < A5 < (27‘(’ + )\2). (121)

The dimensionful parameters u%, M, and My are constrained by the requirement that there be an
acceptable electroweak symmetry breaking vacuum. We find that the following ranges capture all allowed
parameter points:

pi > —(200 GeV)?,
M, < max<3500 GeV, 3.5 m§|>,

M| < max<250 GeV,1.3 ugo. (122)

Note that M; can be chosen positive with no loss of generality, so that 0 < M;. M takes either sign.
There is no upper bound on y3; the limit p3 > v? is the decoupling limit, in which the masses-squared of
the predominantly-triplet states approach ,u%.

6.7 Standard Model inputs

The Standard Model input parameters are initialized by the subroutine INITIALIZE SM, which must be
called before anything else. The parameter values are hard-coded in /src/gminit.f.
The primary electroweak inputs are [28]

Gp = 1.1663787 x 107> GeV 2, My = 91.1876 GeV, My = 80.385 GeV. (123)

The SM Higgs vev is computed as v = (v2Gp)~1/2.
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