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Abstract

The Georgi-Machacek model adds scalar triplets to the Standard Model Higgs sector in such a way
as to preserve custodial SU(2) symmetry in the scalar potential. This allows the triplets to have a non-
negligible vacuum expectation value while satisfying constraints from the p parameter. Depending on
the parameters, the 125 GeV neutral Higgs particle can have couplings to WW and ZZ larger than in
the Standard Model due to mixing with the triplets. The model also contains singly- and doubly-charged
Higgs particles that couple to vector boson pairs at tree level (W Z and like-sign WW | respectively).

GMCALC is a self-contained FORTRAN program that, given a set of input parameters, calculates
the particle spectrum and tree-level couplings in the Georgi-Machacek model, checks theoretical and
indirect constraints, and computes the branching ratios and total widths of the scalars. It also generates a
param_card.dat file for MadGraphb to be used with the corresponding FeynRules model implementation.

*Code available from http://people.physics.carleton.ca/~logan/gmecalc/ .
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1 Introduction

The Georgi-Machacek (GM) model [I], 2] is an extension of the Standard Model (SM) Higgs sector con-
taining additional scalars in the triplet representation of SU(2)y. The particle content is such that an
additional global SU(2)r symmetry can be imposed by hand on the scalar potential. This ensures that the
custodial SU(2) symmetry, which fixes p = M2, /M2 cos? Oy, = 1 at tree level in the SM, is preserved after
electroweak symmetry breaking.

Without the stringent constraint from the p parameter, the vacuum expectation value (vev) of the
triplets can be large, leading to interesting phenomenology. In particular, depending on the parameters,
the 125 GeV neutral Higgs particle can have couplings to WW and ZZ larger than in the SM due to
mixing with the triplets. The model also contains singly- and doubly-charged Higgs particles that couple
to vector boson pairs at tree level, leading to H, 5+ — WTZ and like-sign H gr T WHWT signatures. Such
an HTW™Z coupling is absent at tree level in two Higgs doublet models (2HDMs), and the HTTW W~
coupling is severely suppressed in triplet models without custodial symmetry in which the triplet vev is
forced to be very small by the experimental constraint from the p parameter.

This manual describes the FORTRAN code GMCALC. Given a set of model parameters, GMCALC
calculates the mass spectrum and relevant mixing angles in the scalar sector, as well as the tree-level
couplings of the scalars. It also checks that theoretical constraints from perturbative unitarity of the quartic
scalar couplings, bounded-from-belowness of the scalar potential, and the absence of deeper custodial-
symmetry-breaking minima are satisfied. The code also checks consistency of the parameter point with
indirect experimental constraints from the S parameter, b — sy, and B — ptp~. Finally, it computes
the branching ratios and total widths of the scalars. Most of the code is based on our work in Refs. [3] 4].

GMCALC includes a routine to generate a param_card.dat file for MadGraph5 to be used with the
corresponding FeynRules model implementation. The FeynRules implementation for the Georgi-Machacek
model can be downloaded from the model database at http://feynrules.irmp.ucl.ac.be.

This manual is organized as follows. In Sec. [2 we give a brief description of the GM model and set
our notation. In Sec. [3] we review the theoretical constraints and their implementation. In Sec. [ we
describe the indirect experimental constraints that are implemented in the code. In Sec. [5| we summarize
the computation of the decay partial widths of the scalars and specify the approximations made in the
code. Finally in Sec. [6] we give instructions for using the GMCALC code.

2 Georgi-Machacek model

2.1 Scalar potential

The scalar sector of the Georgi-Machacek model consists of the usual complex doublet (¢*,¢%) with
hyperchargd'] Y = 1, a real triplet (¢7,£°,67) with Y = 0, and a complex triplet (x*+,x*,x") with
Y = 2. The doublet is responsible for the fermion masses as in the SM. In order to make the global
SU(2),xSU(2)g symmetry explicit, we write the doublet in the form of a bi-doublet ® and combine the
triplets to form a bi-triplet X:

0 +

¢ = (_¢¢+* 20 >7 (1)
XO* 5-"— X++

X = [ —x" & x| (2)

X—H—* _ §+* XO
The vevs are defined by (®) = %:ﬂ_gxz and (X) = v, 13x3, where the Fermi constant constrains

1
V2G

vz + 811?( =2 = ~ (246 GeV)2. (3)

"We use Q = T% +Y/2.



Note that the two triplet fields x* and ¢° must obtain the same vev in order to preserve custodial SU(2).
Furthermore we will decompose the neutral fields into real and imaginary parts according to
0,r 10,7
v s R oM
¢0—>—¢+u, x* — v, +
V2 V2
where we note that ¢° is already a real field.
Using the notation of Ref. [3], the most general gauge-invariant scalar potential involving these fields
that conserves custodial SU(2) is given by

XO,T‘ + ZXD,’L

\/§ 9 50 — UX + 507 (4)

2 2
V(®,X) = %Tr(qﬁcb) + %Tr(XTX) + A [Tr(@T )] + Mo Tr (T 0)Tr(XTX)
FATr(XTXXTX) + M\ [Tr(XTX)]2 — AsTr(@T 772 Tr(X T2 X 1)
— M Te(®T 7B (UXU ) gy — MyTr(X 10Xt )(UXTUT) . (5)
(A translation table to other notations used in the literature is given in the appendix of Ref. [3].) Here

the SU(2) generators for the doublet representation are 7% = /2 with o being the Pauli matrices, the
generators for the triplet representation are

1 010 1 0 —i 0 10 0
tt=—1[101])], *!’=—1|i 0 —i |, =100 0 |, (6)
V2 010 V2 0 ¢« 0 0 0 —1
and the matrix U, which rotates X into the Cartesian basis, is given by
1 1
Y
— 7 (3
I I (7)
0 1 0

We note that all the operators in Eq. are manifestly Hermitian, so that the parameters in the scalar
potential must all be real. Explicit CP violation is thus not possible in the Georgi-Machacek model.

2.2 Electroweak symmetry breaking and physical spectrum

Minimizing the scalar potential yields the following constraints:

)% 3
0= oy = v [ug +4AM03 4 3 (2X2 — A5) v} — oMoy, (8)
o——av = 3u’ 3(2\g — \5) 02 12 (N3 + 3)\4) 03 3M2 18 Mov? 9
= 8/UX = H3Vy + ( 2 — 5) 'U¢'UX + ( 3+ 4) UX - Z 1U¢ — QUX. ( )

Inserting v; =2 — 81))% [Eq. ] into Eq. @ yields a cubic equation for v, in terms of v, ,u%, Ao, Az, Aq,
X5, My, and Ms. With vy (and hence vy) in hand, Eq. can be used to eliminate u% in terms of the
parameters in the previous sentence together with A\;. We illustrate below how A; can also be eliminated
in favor of one of the custodial singlet Higgs masses mj, or my [see Eq. ]

The physical field content is as follows. The Goldstone bosons are given by

+ +
+&7)
Gt = cyot +s [Caihd 3} ,
Ho H 7
G* = cud” +sux’, (10)
where Y
2v2
CHECOSQH:%, sy =sinfy = UX. (11)
v v



The physical fields can be organized by their transformation properties under the custodial SU(2) symmetry
into a fiveplet, a triplet, and two singlets. The fiveplet and triplet states are given by

H;—-I— — X++
+_ et
V2
2 1
HY — [2¢0 _ \[ 0,r
5 35 3X ’
+ 4t
+&7)
HI = —spot +c 70( ,
3 HO 7
Hg = —SH(ﬁO’i + CHXO’i. (12)

Within each custodial multiplet, the masses are degenerate at tree level. Using Eqs. (8{{9) to eliminate 13
and p3, the fiveplet and triplet masses can be written as

M 3
2 12 2 2
my = 41}X ’U¢ + 12M2’UX + §A5U¢ + 8)\3’[)X7
M A M A
2 _ 1,2 2 5,2 2y _ 1 5\ 2
ms = Toy (vg + 8vy) + 5 (vg + 8vy) = <4UX t5 > V7. (13)

Note that the ratio M; /v, is finite in the limit v, — 0, as can be seen from Eq. @ which yields
My 45 2 2
T = Uiz [M3 + (2)\2 — )\5)’U¢ + 4()\3 -+ 3)\4)UX — GMQUX] . (14)
X ¢
The two custodial SU(2) singlets are given in the gauge basis by

0 0,
Hl = ¢ Ta

1 2
HY = \/7 0 \/> Or, 15
1 35 + 3X (15)

These states mix by an angle « to form the two custodial-singlet mass eigenstates h and H, defined such
that my, < mpg:

h = cosaHY —sina HY, (16)
H = sinaH} +cosaHY.
The mixing is controlled by the 2 x 2 mass-squared matrix
M2 M3
M2 — ( 11 12 ) : 17
M2y M, 1)

where

M3 = 8\,

V3
My = 5 Ve [— M1 +4 (272 — As) vyl
2 Mlv(% 2
MQQ = 4U — 6M2UX + 8 ()\3 —+ 3)\4) ’UX. (]_8)
X
The mixing angle is fixed by
9 2
sin2a = %,
my —my
2 42
cos2a = %, (19)
my —my



and is chosen to be in the range a € (—m/2,7/2], so that cosa > 0. The masses are given by

1
mp g = 5 [M% + M3y F \/(M% - M%z)z +4 (M%2)2] : (20)

It is convenient to use the measured mass of the observed SM-like Higgs boson as an input parameter.
The coupling A1 can be eliminated in favor of this mass by inverting Eq. :

(M%2) ] . (21)

1
M= |mi+ g
h

v? M3, —m2

8vg

Note that in deriving this expression for A1, the distinction between my and my; is lost. This means that,
depending on the values of u% and the other parameters, this (unique) solution for A\; will correspond to
either the lighter or the heavier custodial singlet having a mass equal to the observed SM-like Higgs mass.

2.3 Yukawa sector

Fermion masses are generated through couplings to the complex doublet ¢ = (¢T, ¢") in the same was as
in the SM. We neglect neutrino masses. The relevant Lagrangian terms are

3 3
Lo=>>" [yzujﬂRi(bTQLj + yfﬂmfﬂ@u} +yilrid L + hoc., (22)
i=1 j=1

where 7, j run over the three generations and ¢ = io2¢*. The custodial singlets and triplet contain an

admixture of ¢, and so couple to fermions. The custodial fiveplet states do not couple to fermions.
The Feynman rules for neutral scalars coupling to fermion pairs are given as follows:

Wit L cosa’ HFf: _;ms sma,
v cosOy v cosOy
H%u : @taneryg,, Hdd : —@tanﬁH%. (23)
v v

Here f denotes any charged fermion, u stands for any up-type quark, and d stands for any down-type
quark or charged lepton.

The Feynman rules for the vertices involving a charged scalar and two fermions are given as follows,
with all particles incoming;:

Hifad : — V2V, tan Oy (%PL _ %PR) ,
Hi*du - —iV2V¥ tan 0y (%PR - %PQ ,

H;DE: iﬂtan&H%PR,

H* v iﬂtan0H¥PL. (24)

Here V4 is the appropriate element of the Cabibbo-Kobayashi-Maskawa matrix and the projection oper-
ators are defined as Pr, = (1 £75)/2.

3 Theoretical constraints

3.1 Tree-level unitarity

We implement the conditions for unitarity of tree-level 2 — 2 scalar particle scattering amplitudes computed
in Refs. [5, B]. These were computed by imposing |[Reag| < 1/2 on the eigenvalues of the zeroth partial



wave amplitude coupled-channel matrix, and read

\/(6)\1 — TAg — 1104)% + 3602 4 [6A; + TAs + 11My] < 4,

\/(2)\1+)\3—2>\4)2+)\§+|2)\1 —)\3+2)\4| < A4,
12A3 + \q| <
o — 5| < 2 (25)

3.2 Bounded-from-below requirement on the potential

We implement the conditions that ensure the scalar potential is bounded from below as computed in
Ref. [3]. They read as follows:

)\1 > 0,
1
—*)\3 for )\3 > 0
3 )
Ao> { “Xs for A3 <0,
A5 =20/ A1 (3Xs + Aq) for A5 > 0 and A3 > 0,
A2 > 4w (OXs — 2¢/ M (CAhs + Ag) for A5 >0 and A3 < 0, (26)
w_(0)As — 24/ A1(CA3 + Ag) for A5 <0,
where 12
1 V2 1
o= ga-B) 22 la-m) (5 8)] (27)
with

B= ;(g—;) € 1[0,1]. (28)

The last two conditions for A in Eq. must be satisfied for all values of { € [%, 1]. We implement this
through a 1000-point scan over ( in the specified range.

3.3 Absence of deeper custodial symmetry-breaking minima

Finally, we implement a check that the scalar potential possesses no custodial symmetry-breaking min-
ima that are deeper than the desired custodial symmetry-preserving minimum, following the procedure
described in Ref. [3]. We write the scalar potential as

2 2
V= %cﬂ + %zﬁ At + Aaa2b? + Chgb* + Agbt — wAsa2b? — o Mia®b — pMab?, (29)

where a? = Tr(®'®) and b> = Tr(XTX) and the dimensionless coefficients ¢, w, o, and p vary with varying
triplet field configurations. The minimum of V' is always traced out by the path [3]

1
¢ = §sin49—|—cos49,

L in26 + in 6 cos 6
w = -—sin ——sin# cos b,

4 V2

1 1

o = 2\&sim€+zcosﬁ7
p = 3sin®6fcosb, (30)

with 6 € [0,27). Our desired electroweak-breaking and custodial SU(2)-preserving vacuum corresponds
to & = cos™'(1/v/3). The vacuum 6 = 7 + cos~!(1/1/3) is also acceptable; it corresponds to negative



b. The depths of these vacua are determined by applying the minimization conditions and solving the
resulting cubic and quadratic equations to determine the values of a and b that minimize the potential,
then evaluating V' at this minimum.

This procedure is then repeated for other values of 6 [corresponding to vacua that spontaneously break
custodial SU(2)] using a 1000-point scan over 6 € [0,27). Parameter points fail this check if any vacuum
solution exists in which V is lower than the value in the desired vacuum.

4 Indirect experimental constraints

Indirect constraints from the S parameter, b — sv, and B? — putp~ are implemented in the code. A
detailed physics description is given in Ref. [4]. Currently the constraint from b — s7 is stronger than that
from BY — pu~, but that may change in the next several years as more data is collected at the CERN
Large Hadron Collider.

4.1 S parameter

When the new physics is not light compared to Mz, the S parameter can be written in terms of the
derivatives II'(0) = dII(p?) /dp?|,2—o of the gauge boson self-energies as

2 2
dsiy ey

02 o 82
5= S g, (0) - W (0) - 1n, 0)] 31)

OEM SWew

The new physics contribution in the GM model, relative to the SM for a reference Higgs mass m,SLM, is [4]

o~ (logm3 + 5logm3) + 2|gz,p9|” f1(mp, ms3)

g - S%VC%/V {_ e2
2
125WCW

ez

2) f1(ms, m3)

+2l97mpol? fr(mm, ms) + 2 (|92H§H§\2 + 20955 1y

Mz, m Mz,m
+g9zzn? [fl(mzﬂh) - fS(MZ>mh)} +l9zzul® [W — f3(Mz,mg)
Z zZ
2 fl(MZam5)
+1922m0] {2M§ fS(MZ,ms))]
o [ filMw,ms)
+2’gzw+H;—* |:2MI%V fg(MW,m5):|
fl(M27mSM)
—lg2 %l [th — fs(Mz,mi™M)| ¢, (32)
Z
where
fu(myms) = 5(m§ —m$) + 27(mim3 — mIm3) + 12(m§ — 3mim3) logmy + 12(3m3m3 — m$) log ma
1 1,772 36(777,% — m%)3 ;
4 4 2,2 2 2
m; — ms + 2mims (logms — logm
f3(m1,m2) _ 1 2 122( — 2 1)' (33)
2(my —m3)

2
. o1 . . m. . . . —
For numerical stability we use an expansion in € = -3 — 1 when m? ~ m3 to within a part in 1074,

1

1 € 1 €
) = Sogm? 4 €| ) - 34
filmamz) = Glogmy+ 35 falmima) = 6o = Tom? (39



The couplings that appear in Eq. are given by [3]

_ 12 e Vg Uy 2 e Vg Vy
zhug = _Z\/;SWcW <Sa? + ﬂc&?) ’ 9zHHY = Z\/;swcw (CO‘? B ﬁs@?) ’

\/T e qu e U¢
- —1 o ) * = )
JzHHy 3 swew v Iz1f 1T 2swew v
9zzn = CaVyp — SaUy | » 9zzH = SaV¢ Caly |,
IQ/V ‘Q/V (0% \/g avx 25%/‘/612/‘/ « \/g avx
\/562

= = —————y, 35

9zzHY \/7 SWCW Izw+nt cw s, X (35)

and the SM coupling g%l\é[h is given by

62’0

SM
= —. 36
9ZzZh 2512/‘/ CI%V (36)
We use s, = sina, ¢, = cos«, and similarly for the sine and cosine of the weak mixing angle.
For a reference SM Higgs mass of m,SLM = 125 GeV and setting U = 0, the global electroweak fit
yields [6]
Sexp = 0.06 £ 0.09, Texp = 0.10 £ 0.07, (37)

with a correlation pg = +0.91. These values (MHREF, SEXP, DSEXP, TEXP, DTEXP, and RHOST, respectively)
are hard-coded in the subroutine INITINDIR in /src/gmindir.f.
We compute the y? according to

. (S = Sexp)® | (T = Texp)® 2057 (S = Sexp) (T — Texp)
(1=0%7) | (ASexp)”  (ATexp)? ASexpATexp ’

(38)

where ASeyp, and ATy, are the 1o experimental uncertainties.

It is well known that the one-loop calculation of the T' parameter in the GM model yields a divergent
result due to the explicit breaking of the custodial symmetry by hypercharge gauge interactions [7]. In
a proper treatment 17" acquires a counterterm, which must be set, e.g., by specifying the energy scale at
which the custodial symmetry in the scalar potential is exact. Here we take the conservative approach of
marginalizing over T', which amounts to setting

ATexp

T= Texp + pST(S - Sexp) AS..
exp

(39)

We set the flag SPAROK = 1 if the GM prediction for the S parameter yields x? < 4, and SPAROK = 0
otherwise.

4.2 b— sy

The current world average experimental measurement of BR(B — X,7), for a photon energy E, > 1.6 GeV,
is [8]
BR(B — X7Y)exp = (3.55 & 0.24 £ 0.09) x 1074, (40)

To evaluate the constraint from this observable, we calculated the GM model predictions for a grid of
(ms3,vy) values by adapting the implementation for the Type-I 2HDM in the code SuperIso v3.3 [9] (which
makes use of the code 2HDMC v1.6.4 [10]). Our choice of input parameters yields a prediction in the limit
vy — 0 or mz — oo of

BR(B — X¢v)sMlimit = (3.11 4 0.23) x 1074, (41)



where the theoretical uncertainty is taken from Ref. [II]. We scale the theoretical uncertainty by the
ratio BR(B — Xsv)am/BR(B — Xsv)smumic before combining it in quadrature with the experimental
uncertainties.

The two data files /src/bsgtight.data and /src/bsgloose.data contain two sets of points (ms,v,) corre-
sponding to the contour at which BR(B — X¢y)am = 2.88 x 10~ (“tight” constraint) and 2.48 x 10~4
(“loose” constraint), respectively. These correspond to a 20 deviation from the experimental central value
(“tight”) and a value 20 “worse” than the SM prediction (“loose”). For further explanation, see Ref. [4].
Model points are checked for consistency with these constraints by linearly interpolating the upper bound
on vy to the appropriate mass m3. For m3g < 10 GeV the limit on v, for mz = 10 GeV is used, and for
mg > 1000 GeV the limit on v, for ms = 1000 GeV is used. (This latter limiting value falls outside the
parameter range allowed by theoretical constraints, and so is irrelevant in practice.)

We set the flag BSGAMTIGHTOK = 1 if the GM prediction for BR(B — Xv) satisfies the “tight” 20
constraint, and BSGAMTIGHTOK = 0 otherwise. Similarly, we set the flag BSGAMLOOSEOK = 1 if the GM
prediction for BR(B — X,v) satisfies the “loose” 20 constraint, and BSGAMLOOSEOK = 0 otherwise.

4.3 BY — utp

The time-averaged branching ratio for B — p*u~, normalized to its Standard Model value, is given to
an excellent approximation by the ratio of Z-penguin contributions [4], 12]

AR (RO +,,- SM GM |2
RBSMM = ER(BS = ) o~ 'Clo _‘S_MClO , (42)
BR(BY — ptp)sm Cio
where [12] . -
M, Clas(Mz) |
SM t s A
= —0. 4
Cio 0-9380 {173.1 Ge\/} [ 0.1184 ] (43)
and [4, 12]
log x43
CCGM _ oSM | 4020 Ltw Tt3 Tt3 A4
10 10 +tan” 0y ) 1— T3 (1 _ xt3)2 ’ ( )

with zy = mz (M) /M3, and 243 = M3 (My)/ m%ﬂ For numerical stability we use an expansion in § = z;3—1
when 243 ~ 1 to within a part in 1074,

T43 x3 log a:tg] L

~— o =24 — 1 : 4

The corresponding SM prediction and its uncertainty are [12]

[ M, ] 1.53 {%(Mz)} ~0.09

2

BR(BY = ' p " )sm = (3.67£0.25) x 10~° (46)

173.1 GeV 0.1184

We calculate the prediction in the GM model by scaling this prediction and its uncertainty by RBSMM.
The current world average experimental value (from CMS and LHCD) is [13]

BR(B? = p i Jexpt = (2.9 £0.7) x 107°. (47)

The experimental central value (BMMEXP) and its uncertainty (DBMMEXP) are hard-coded in the subroutine
INITINDIR in /src/gmindir.f.

Combining the theoretical and experimental uncertainties in quadrature, this measured value is about
lo below the SM prediction. The GM prediction is always higher than the SM prediction (in worse
agreement with experiment) and depends only on the parameters ms and tan 0.

We set the flag BSMMOK = 1 if the GM prediction for BR(BY — pu* ™) is within 20 of the experimental
value, and BSMMOK = 0 otherwise.

2The calculation of the MS running top quark mass e (p) is described in Sec. M is the pole mass.
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5 Decays

Starting from the tree-level masses and couplings, the code calculates the decay widths of the Higgs bosons
into various final states. At tree level the Higgs bosons can decay into pairs of fermions, pairs of massive
gauge bosons, a gauge boson and a lighter Higgs boson, and two lighter Higgs bosons. Decays of the neutral
Higgs bosons into gg, vy, and Zv are induced at one loop.

51 H— ff

The custodial singlet states h and H and the custodial triplet states HS and HgE can decay to pairs of
fermions. The custodial fiveplet states do not couple to fermions.

The Feynman rule for a scalar coupling to ff is parameterized as i(g° + g¥’s5), where g° is the scalar
part and ¢© is the pseudoscalar part. ¢° and ¢g” can be simultaneously nonzero only for charged Higgs
couplings to fermions.

The decay width to fermions is given by (the number of colors N, = 3 for quarks and 1 for leptons)

. NcmH

P(H = ff) === {[1 = (@1 + 22 19°[* + [1 = (w1 = 2)°] [P} N2 (ad, 23), (48)

where x1 = mys/mpg, o = myp /mpy, and the kinematic function A is given by
Aa,y) = (1 -z —y)? —day. (49)

For scalar decays to quarks, we incorporate the QCD corrections as follows. First, we incorporate the
leading QCD corrections by replacing m, — m,(Mp) in the Yukawa couplings ¢ and g%, where 7, (M)
is the MS running quark mass evaluated at the scale of the parent Higgs particle’s mass. We compute the
running quark masses using [14]

_ _ clas(p)/m)
= M,
mfl(u) mq( q)C[OZS(,U,)/TF], (50)
where
95 \ 12/25
clx) = (6x> (1 + 1.0142 + 1.389z7), M. < p <M,
93 \ 12/23
cz) = <6$> (1+ 1.175z + 1.501z2), My, < p. (51)
The running strong coupling constant is computed using [14]
12 153 — 19N;) loglog(1?/A%;)
ot (1) = S PR /) S (52)
(33 — 2Ny) log(p /ANf) (33 —2Nf)?  log(p /ANf)

We implement matching at the bottom quark threshold by requiring continuity of as. Above the top
threshold we continue to use the five-flavor scheme for consistency with HDECAY [15].

Second, for decays of neutral CP-even scalars to bb or c¢ we incorporate the finite QCD corrections by
multiplying the partial width given above by the factor [14]

[Agcp + Ay, (53)
where
J(M s(Mn)\?
Aoon = 1+567% ) (55040 136N (O‘(H)> :
T T
as (M 2 2 1
A, = <(7rH)> {1.57 ~ glog(M%I/Mf) +35 logQ(mﬁ(MH)/M?z)} : (54)

11



The relevant SM inputs to GMCALC are
ALSMZ = as(Mz),  MTPOLE = M;,  MBMB = mmy(my),  MCMC = mm.(my). (55)

The values are set in INITIALIZE SM in /src/gminit.f. The b and ¢ quark pole masses, and the running
top quark mass, are obtained using the O(«;) relation [14]

mg(My) = Mg/[1 + 4as/3m]. (56)

5.2 H—-W"V,

The custodial singlet states h and H, as well as the neutral custodial fiveplet state H?, can decay to
WHW~ and ZZ. The charged custodial fiveplet state H5Jr can decay to WTZ. The doubly-charged
custodial fiveplet state H 5+ T can decay to WTW™. The custodial triplet states do not couple to pairs of
massive vector bosons.
The Feynman rule for a scalar coupling to massive vector bosons V{'VJ is parameterized as igmv; v, g*” .
The on-shell two-body decay width into two massive vector bosons is given by

‘gHV1V2|2m§{

I'H —WiVp) =5
( 1V2) " 64m M2 ME,

[1— 2ky — 2ka + 10k1ka + kT + k3] ANV (1, ko), (57)

where k1 = Mal/m%{ and ko = M‘Q/Z/m%{, and Sy is a symmetry factor given by Sy = 1 if V; and V5
are distinct bosons (e.g., WTW = or ZW™) and Sy = 1/2 if V; and V; are identical bosons (e.g., ZZ or
WHWw).

We also implement decays of h, H, HY, and H5+ T to WW* and ZZ* (with one of the two gauge
bosons off-shell) when the scalar mass is below threshold for the on-shell two-body decay. We have not yet
implemented the singly off-shell decay T'(Hy — WTZ* + Wt*Z). Following Ref. [16], for decays to two
vector bosons with the same mass My,

3lgavv|*my [1 — 8k + 20k? <3k—1> 1—k
arccos —

T(H—>VV*) = Syé
(H = VV7) VOV 642 (4k — 1)1/2 213/2 6k

(2 — 13k + 47K?)

1
—5 (1= 6k + 4k?) log k] , (58)

where k = M2 /m? and the factors dy and dy areﬂ

3
5W = 57
7 10 40

We have not taken into account the interference effects in same-flavor decays due to crossed diagrams.

5.3 H1 — VH2

The custodial singlet states h and H can decay to a vector boson plus a custodial triplet scalar. The
custodial triplet states Hg and H;E can decay to a vector boson plus a custodial singlet state, or to a vector
boson plus a custodial fiveplet state. The custodial fiveplet states H, 50 , H g—L, and H, g:i can decay to a vector
boson plus a custodial triplet state.

The Feynman rule for the H; H3V); coupling (all particles and momenta incoming) is parameterized as
igv+m, Hy (P1 — Pp2)u, Where p1 (p2) is the incoming momentum of the scalar Hy (H3).

3We absorb the factor of cfy that appears in the denominator of 6z in Eq. (36) of Ref. [I6] into the coupling |grzz|>. We
also separate out a symmetry factor of 2 from dw for later convenience when implementing singly-offshell H; — V* Hs decays.
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The on-shell two-body decay width into one vector and one lighter scalar is given by

|9V*H1H*‘2M\2/ m%{ 1/2 M2 m%{
[(H, — VHy) = 167m§Hl A M;, M2 A\ qu e 2 |, (60)
1 1

Here V denotes one of the gauge bosons Z, W+, or W, such that the decays H* — WTH~ and H° —
W~HT are distinct.

We also implement H; — V*Hy decays (with the gauge boson off-shell) when the H; mass is below
threshold for the on-shell two-body decay. Following Ref. [16],

2772
3|gvmy 1y |“Mymp,
167302

F(Hl — V*Hg) = 5‘/ GH2v, (61)
where again V denotes one of the gauge bosons Z, W, or W, such that the decays H — W+H~ and
H® — W~HT are distinct. dy and 67 were given in Eq. . The kinematic function Gj; is defined as

follows (here we fix a typing error in Ref. [16] as pointed out in Ref. [I7]: the last term is +2X;;/k; rather
than —QAZ'j/k'j):

o 1 ' ‘ — |7 k?j(l—k‘j—l-k‘i)—/\ij
G’Lj - 4{2(_1+k7]_k1)\/)\1j 2+arctan< (1—]{0\/%
2
+()\ij—2ki)logki+%(1—ki) |:5(1+k) 4k + ];\J]}, (62)
J

where k; = ky, = milz/m%h’ kj=ky = M‘Q//m%ﬁ, and

5.4 H1 — H2H3

The custodial singlet states h and H can decay into a pair of custodial triplet states or a pair of custodial
fiveplet states. Furthermore H can decay into hh. The custodial fiveplet states H. g, ch, and H?i can
decay into a pair of custodial triplet states. The custodial triplet states cannot decay into pairs of scalars
due to a combination of custodial SU(2) invariance and Bose symmetry.

The Feynman rule for the HyH3 H; coupling (all particles incoming) is parameterized as —igi23.

The decay width for H; into two lighter scalars HoHj is

|9123|2 1/2
I'(H HyHs) = A X9, X 4
(Hy — HyH3) = Sy T6mmim, (X2, X3), (64)

where Xy = m%b /m%,1 and X3 = m%ﬁ/m%{l, and Sy is a symmetry factor given by Sy = 1 if Hy and Hjs
are distinct bosons and S = 1/2 if Hy and Hj are identical bosons.

5.5 H — vy

Neutral scalar decays into two photons proceed through a loop of charged particles. The width is given

by [18]
2

Oé m

where agys is the electromagnetic fine-structure constant, v = (\/ﬁGF)_l/2 ~ 246 GeV is the SM Higgs
vacuum expectation value, and A}] represents the sum of the loop amplitudes for initial particle H.
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For an initial scalar (S = h, H, or HY), the amplitude receives contributions from fermions, W bosons,
and charged Higgs bosons (Hy , HZ , and Hy ") in the loop, and is given by

AL =53 NegQiFy jo(s) + iy Fi(tw) + Y B Q2Fy (7). (66)
f s

For the fermion loops, N,y and Q) are the number of colors and electric charge in units of e, respectively,
for fermion f, and n;? is the scaling factor for the coupling of S to fermions relative to the corresponding
coupling of the SM Higgs boson, defined in such a way that the Feynman rule for the Sff coupling is
—i(mg/ v)n? . The custodial fiveplet does not couple to fermions, so lifg =

For the W loop, H§V is the scaling factor for the coupling of S to W pairs relative to the corresponding
coupling of the SM Higgs boson, defined so that the S WJ W, Feynman rule is mﬁ,(ZMﬁV /) G-

For the scalar loops, the sum over s runs over all electrically charged scalars in the GM model (H. 3+ ,
ng, and H5++) Qs is the electric charge of scalar s in units of e, and Bf = gsss+v/2m?2. The coupling

Z.
gsss+ is defined in such a way that the corresponding interaction Lagrangian term is £ D —gggss+Sss™.
The loop factors are given in terms of the usual functions [1§],

Fi(t) = 2+4+374+37(2—1)f(7),

Fipp(r) = =271+ (1 =7)f(7)],
F(r) = 7ll=7f(7)], (67)

2
[sin=* (/1) if 7> 1,
flr)= 2 (68)
~1 [log (%) . m] if 7 <1,
with ny =14+ +/1 — 7. The argument is 7; = 4m12/m%

For an initial pseudoscalar (A = Hg), the amplitude receives contributions only from fermions in the
loop, and is given by

where

AW =57 Y NepQ3F{o(77) (69)
f
where the Feynman rule for the Aff coupling is defined as —(m ¢/ v)ﬁjﬁ‘% and the loop function is
Ff)y(r) = =2 f(7). (70)

5.6 H —gg

Neutral scalar decays to two gluons proceed through a loop of colored particles. In the GM model, the
only colored particles are the SM quarks. Therefore this decay occurs only for h, H, and HY (the custodial
fiveplet does not couple to fermions).

The width is given by [18]
2,3

aim
I'(H — gg) = @TI;’A?{QR (71)
where A% represents the sum of the loop amplitudes for initial particle H.

For an initial scalar (S = h or H), the amplitude is

AY =K7Y Fipa(ry). (72)
f

For an initial pseudoscalar (A = HY), the amplitude is

AY = K?ZF{}2(TJC). (73)
f
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We incorporate the QCD corrections as follows. First, we evaluate ag in the leading-order amplitude
at the scale of the parent particle’s mass. Second, for the decays of CP-even neutral scalars, we multiply
the leading order amplitude by the factor [14]

1+ ENfaéNf’/w} , (74)
where 95 7 33 _ 2N
BN = 7 gt Tf log (1 /M), (75)

and we use Ny = 5 throughout, consistent with NF-GG = 5 in HDECAY [15].

5.7 H — Z~

Neutral scalar decays to Z plus a photon proceed through a loop of charged particles. The width is given
by [1§]

m M2\?

Z

0t - 2 =SB (1- 22 (76)
H

where Afﬂ represents the sum of the loop amplitudes for initial particle H.
For an initial scalar (S = h, H, or HY), the amplitude isﬁ

v
A§7 = ,‘Q?Af + K‘S;AW + §AS, (77)
where the contributions from fermions, W bosons, and scalars are given by [1§]

—20; (T}”L — 2Q; sin? ew)

A = N, -
s ;q Y [Li(7, Ap) = Do, Ap)
2 2 2 2
Ay = —cotby 4(3—tan GW) Iy (tw, A\w) + 1+ — Jtan“Ow — |5+ — || [1 (Tw, A\w) ¢,
™ ™
ss* C ss* S
A, = Z2gh z Qs gm0 (78)

Here T })’L = 41/2 is the third component of isospin for the left-handed fermion f. The scalar amplitude
depends on the coupling Cyzss+ = gzss+/€ of the scalar to the Z boson, defined in such a way that the
corresponding coupling of the scalar to the photon is Cysex = gyssx/€ = Q.

The loop factors are given in terms of the functions [1§]

ab a’b? a’b
Il(“? b) = 2(CL _ b) + 2(CL - b)2 [f(a) - f(b)] + (a _ b)g [g(a) - g(b)] )
Blah) = 5 @) = FO). (79)

where the function f(7) was given in Eq. and

V7 —1sin~? (\E) i 7> 1,

WI—71 [log (2%) - m} if <1, (80)

g(m) =

with 4 defined as for f(7). The arguments of the functions are 7; = 4m?/m? as before and \; = 4m?/M2.

“Decays of HY — Z~ may also receive a contribution from mixed loops containing both H. + and W. These contributions
have not been implemented yet.
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For an initial pseudoscalar (A = HY), the amplitude is

~2Qy (T3~ 2Q; sin® Oy )
sin Ay cos Oy

AL = k1D Ny [—La(7s, Ap)]. (81)
f

6 Using the GMCALC program

The GMCALC code package is available for download as a .tar.gz file from the web page
http://people.physics.carleton.ca/~logan/gmcalc/

The package includes this manual. Feature requests and bug reports should be sent to Heather Logan at

logan@physics.carleton.ca .

6.1 Sample main programs provided with the code

Three sample main programs are provided with the code. These can be used as-is, or as templates for the
user to write their own programs. The command

$ make sample

compiles the program sample.f into an executable sample.x using gfortran. The executable is run using
$ ./sample.x

The sample programs are as follows:

e gmpoint.f performs the full set of available calculations for a single parameter point and outputs
the spectrum, couplings, and decay tables to the terminal.

e gmscan.f performs a scan over the allowed parameter ranges using the approach described in Sec.
For each scan point allowed by theoretical and indirect experimental constraints, it writes a selection
of observables to a file scan_output.data.

e gmmg5.f generates a param_card.dat file for use with the FeynRules model implementation.

6.2 Setting the model parameters
There are currently three choices of input parameters implemented in GMCALC:

e INPUTSET = 1 uses the primary inputs u%, A1, A2, A3, A\q, A5, M7, and M>. The parameter u% is set
using the constraint on v?b + 81))2( in terms of Gp.

e INPUTSET = 2 uses the primary inputs u%, mp, A2, A3, A1, A5, My, and My. The parameter u3 is
again set using the constraint on U?b + 8v>2< in terms of Gp.

e INPUTSET = 3 uses the primary inputs my, mg, ms, ms, sinfyg, sina, My, and My. G is also used
to set u3.

e INPUTSET = 4 uses the primary inputs my, ms, sinfg, Ao, A3, Ag, M1, and Ms. G is also used to
set ,u,%.

These inputs can be hand-coded in the sample programs (indicated by INPUTMODE = 0). Alternatively, the
program can be run in interactive mode (INPUTMODE = 1) in which case the user will be prompted to enter
the inputs at the terminal. In either case, the subroutine LOAD_INPUTS processes the inputs and computes
the remaining potential parameters. LOAD_INPUTS sets a flag INPUTOK = 1 if the specified inputs yield an
acceptable scalar potential.
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6.3 Checking consistency and computing the spectrum

Before computing the physical spectrum, the scalar potential should be checked for consistency with
theoretical constraints. This is accomplished by the subroutine THYCHECK, which returns three flags: UNIOK
= 1 indicates that the perturbative unitarity constraints on A;_s are satisfied; BFBOK = 1 indicates that
the scalar potential is bounded from below; and MINOK = 1 indicates that the desired electroweak-breaking
vacuum is the global minimum of the potential.

The physical masses, vevs, and custodial-singlet mixing angle o can then be computed by the subroutine
CALCPHYS. Results are passed via the common block

COMMON/PHYSPARAMS/MHL ,MHH ,MH3,MH5, ALPHA,, VPHI , VCHI.

They can be accessed directly by adding this common block declaration in one of the sample programs;
alternatively, they can be output to the terminal by the subroutine PRINT_RESULTS (see Sec. .

With the physical spectrum computed, the indirect constraints can be checked by calling the subroutine
CALCINDIR. This returns a series of flags which, if set to 1, indicate that the model point satisfies the
corresponding indirect constraint. The flags are: BSMMOK (B? — ptu~), SPAROK (oblique S parameter),
BSGAMLOOSEOK (“loose” constraint on b — s7), and BSGAMTIGHTOK (“tight” constraint on b — sv). These
can be accessed directly by including the common block

COMMON/INDIR/RBSMM, SPARAM,BSMMOK , SPAROK ,BSGAMLOOSEOK ,BSGAMTIGHTOK.

They are also output to the terminal by the subroutine PRINT_RESULTS (see Sec. [6.5]). The double precision
variables RBSMM and SPARAM in this common block contain the ratio of BR(BY — utp~) to its SM value
and the value of the S parameter for this model point, respectively.

6.4 Computing couplings and decays

Once CALCPHYS has been called, we are ready to compute Higgs couplings and/or decay branching ratios.
There are three subroutines that can be called independently of each other:

e HLCOUPS computes the kappa factors K;? (i.e., the couplings normalized to their SM values) of h.
These are output to the terminal in a tidy form by PRINT_HCOUPS, but can also be accessed through
the common block

COMMON/KAPPASL/KVL,KFL ,KGAML ,KZGAML ,DKGAML , DKZGAML.

e HHCOUPS does the same but for H. These are output to the terminal by PRINT_HCOUPS, but can also
be accessed through the common block

COMMON/KAPPASH/KVH,KFH,KGAMH ,KZGAMH , DKGAMH , DKZGAMH.

e CALCDECAYS performs the full set of partial width calculations (see Sec. |5 for all the scalar particles
in the model, as well as for the top quark, which can decay to Hg’ b if kinematically allowed. The
resulting branching ratios and total widths are output to the terminal in a tidy form by PRINT DECAYS,
but can also be accessed through the series of common blocks for each particle as follows:

h: COMMON/HLBRS/HLBRB, HLBRTA, HLBRMU, HLBRS, HLBRC, HLBRT, HLBRG, HLBRGA, HLBRZGA,
HLBRW, HLBRZ, HLBRWH3P, HLBRZH3N, HLBRH3N, HLBRH3P, HLBRH5N, HLBRH5P, HLBRH5PP,
HLWDTH

H: COMMON/HHBRS/HHBRB, HHBRTA, HHBRMU, HHBRS, HHBRC, HHBRT, HHBRG, HHBRGA,
HHBRZGA, HHBRW, HHBRZ, HHBRWH3P, HHBRZH3N, HHBRHL, HHBRH3N, HHBRH3P, HHBRHS5N,
HHBRH5P, HHBRH5PP, HHWDTH

}¥§:CDMMON/HBNBRS/HBNBRB, H3NBRTA, H3NBRMU, H3NBRS, H3NBRC, H3NBRT, H3NBRZHL,
H3NBRZHH, H3NBRZH5N, H3NBRWH5P, H3NBRG, H3NBRGA, H3NBRZGA, H3NWDTH
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fﬂf:COMMON/HSPBRS/HBPBRBC, H3PBRTA, H3PBRMU, H3PBRSU, H3PBRCS, H3PBRTB, H3PBRBU,
H3PBRWHL, H3PBRWHH, H3PBRZH5P, H3PBRWH5N, H3PBRWH5PP, H3PWDTH
}Yg:CDMMON/HSNBRS/HSNBRGA, H5NBRZGA, H5NBRW, HS5NBRZ, HS5NBRZH3N, HS5NBRWH3P, HS5NBRH3N,
HS5NBRH3P, HS5NWDTH

Eﬁf:COMMDN/HSPBRS/HSPBRWZ, H5PBRZH3P, HS5PBRWH3N, HS5PBRH3PN, H5PWDTH

f{;+3 COMMON/H5PPBRS/H5PPBRWW, H5PPBRWH3, H5PPBRH3P, H5PPWDTH

t: COMMON/TOPBRS/TOPBRW, TOPBRH3P, TOPWDTH

6.5 Outputs

There are three subroutines dedicated to printing results to the terminal:

e PRINT RESULTS prints the Lagrangian parameters, the flags indicating theoretical consistency and
consistency with indirect experimental constraints, and the physical masses, vevs, and custodial-
singlet mixing angle. These must have been previously computed by calls to LOAD_INPUTS, THYCHECK,
CALCPHYS and CALCINDIR (in that order).

e PRINT_HCOUPS prints the kappa factors for A and H. These must have been previously computed by
calls to the subroutines HLCOUPS and HHCOUPS.

e PRINT DECAYS prints out the decay branching ratios and total widths of all the scalars in the model,
as well as those of the top quark. These must have been previously computed by a call to the
subroutine CALCDECAYS.

6.6 Parameter scans

To perform scans over the model parameters in an efficient way, the following strategy can be adopted.
Setting my, equal to the observed Higgs boson mass ~ 125 GeV and setting 3 using G, the seven free
parameters are (INPUTSET = 2)

13, X2, A3, A, As, My, and My. (82)

The parameters A3 and A4 are mainly constrained by the unitarity and bounded-from-below conditions.

The allowed range of A3 is
1 3

57 < Az < 57 (83)
The allowed range of A4 is then
For A3 < 0: A3 < 4 < <—7)\3—|—27T),
11 11
For A3 > 0: —})\3 << (—7)\3 + 27T> . (84)
- 3 11 11

The parameter Ay is constrained by the first of the unitarity constraints in Eq. . Since we don’t
know A1 until the rest of the parameters are set, we allow it to vary to obtain the least stringent constraint
(which occurs when A\; = 0),

1
IAo| < g\/47r2 —271(TA3 + 11)y). (85)

Note that 0 < (7A3 + 11A\4) < 2m. Implementing a lower bound on the scan range for Ay from the
bounded-from-below constraint does not dramatically improve the code’s efficiency.
The last of the unitarity constraints in Eq. then constrains

(—271' + )\2) < A5 < (27‘(’ + )\2). (86)
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The dimensionful parameters pu3, Mj, and Ms are constrained by the requirement that there be an
acceptable electroweak symmetry breaking vacuum. We find that the following ranges capture all allowed
parameter points:

p: > —(200 GeV)?,

M, < max<3500 GeV,3.5 |,u%|>,
|Ms| < max<250 GeV, 1.3 u%l)- (87)

Note that M; can be chosen positive with no loss of generality, so that 0 < M;. M, takes either sign.
There is no upper bound on /i:%; the limit ,u§ > v? is the decoupling limit, in which the masses-squared of
the predominantly-triplet states approach ,u%.

6.7 Standard Model inputs

The Standard Model input parameters are initialized by the subroutine INITIALIZE_SM, which must be
called before anything else. The parameter values are hard-coded in /src/gminit.f.
The primary electroweak inputs are

Gr =1.16637 x 107° GeV™2, My = 91.1876 GeV, My, = 80.398 GeV. (88)

The SM Higgs vev is computed as v = (v2Gp)~1/2.

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada. K.H. was
also supported by the Government of Ontario through an Ontario Graduate Scholarship.

References

[1] H. Georgi and M. Machacek, Nucl. Phys. B 262, 463 (1985).

[2] M. S. Chanowitz and M. Golden, Phys. Lett. B 165, 105 (1985).

[3] K. Hartling, K. Kumar and H. E. Logan, Phys. Rev. D 90, 015007 (2014) [arXiv:1404.2640 [hep-ph]].
[4] K. Hartling, K. Kumar and H. E. Logan, arXiv:1410.5538 [hep-ph].

[5] M. Aoki and S. Kanemura, Phys. Rev. D 77, 095009 (2008) [arXiv:0712.4053 [hep-ph]]; erratum Phys.
Rev. D 89, 059902 (2014).

[6] M. Baak, J. Cuth, J. Haller, A. Hoecker, R. Kogler, K. Moenig, M. Schott and J. Stelzer,
arXiv:1407.3792 [hep-ph].

[7] J. F. Gunion, R. Vega and J. Wudka, Phys. Rev. D 43, 2322 (1991).
[8] J. Beringer et al. [Particle Data Group Collaboration|, Phys. Rev. D 86, 010001 (2012).

[9] F. Mahmoudi, Comput. Phys. Commun. 178, 745 (2008) [arXiv:0710.2067 [hep-ph]]; Comput. Phys.
Commun. 180, 1579 (2009) [arXiv:0808.3144 [hep-phl]; Comput. Phys. Commun. 180, 1718 (2009).

[10] D. Eriksson, J. Rathsman and O. Stal, Comput. Phys. Commun. 181, 189 (2010) [arXiv:0902.0851
[hep-ph]]; Comput. Phys. Commun. 181, 833 (2010).

19



[11] M. Misiak, H. M. Asatrian, K. Bieri, M. Czakon, A. Czarnecki, T. Ewerth, A. Ferroglia and P. Gambino
et al., Phys. Rev. Lett. 98, 022002 (2007) [hep-ph/0609232].

[12] X.-Q. Li, J. Lu and A. Pich, JHEP 1406, 022 (2014) [arXiv:1404.5865 [hep-ph]].

[13] CMS and LHCb Collaborations, CMS-PAS-BPH-13-007, available from http://cds.cern.ch.

[14] A. Djouadi, M. Spira and P. M. Zerwas, Z. Phys. C 70, 427 (1996) [hep-ph/9511344].

[15] A. Djouadi, J. Kalinowski and M. Spira, Comput. Phys. Commun. 108, 56 (1998) [hep-ph/9704448].
[16] A. Djouadi, J. Kalinowski and P. M. Zerwas, Z. Phys. C 70, 435 (1996) |[hep-ph/9511342].

[17] A. G. Akeroyd, Nucl. Phys. B 544, 557 (1999) [hep-ph/9806337].

[18] J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson, The Higgs Hunter’s Guide (Westview, Boulder,
Colorado, 2000).

20



	Introduction
	Georgi-Machacek model
	Scalar potential
	Electroweak symmetry breaking and physical spectrum
	Yukawa sector

	Theoretical constraints
	Tree-level unitarity
	Bounded-from-below requirement on the potential
	Absence of deeper custodial symmetry-breaking minima

	Indirect experimental constraints
	S parameter
	b s 
	Bs0 + -

	Decays
	H f "7016f
	H V1 V2
	H1 V H2
	H1 H2 H3
	H 
	H gg
	H Z 

	Using the GMCALC program
	Sample main programs provided with the code
	Setting the model parameters
	Checking consistency and computing the spectrum
	Computing couplings and decays
	Outputs
	Parameter scans
	Standard Model inputs


