
Carleton University Physics Department

PHYS 4708 (Winter 2016, H. Logan)

Homework assignment #3

Handed out Mon. Feb. 1; due Wed. Feb. 10, 2016 at the start of class.
Problems are worth 5 points each unless noted otherwise.

1. [10 points] (similar to Gasiorowicz 3rd ed. problem 11-11) Consider a two-dimensional har-
monic oscillator with unperturbed Hamiltonian

H0 =
1

2m
(p2x + p2y) +

1

2
mω2(x2 + y2), (1)

with eigenstates |nxny〉 whose energies are E(0)
nxny

= h̄ω(nx + ny + 1). It is subject to a
perturbing Hamiltonian

H1 = 2λxy. (2)

(a) Compute the first- and second-order energy shifts E
(1)
00 and E

(2)
00 of the ground state of

this harmonic oscillator. You can use the expression for x in terms of raising and lowering
operators,

x =

√
h̄

2mω
(ax + a†x), (3)

where ax|nx〉 =
√
nx|nx− 1〉 and a†x|nx〉 =

√
nx + 1|nx + 1〉 and the analogous expression

for y.

(b) Compute the first-order energy shifts of the two states that make up the first excited
energy level of the original Hamiltonian. (Here you’ll need to use degenerate perturbation
theory.)

(c) This problem can be solved exactly by writing

H = H0 +H1 =
1

2m
(p2x′ + p2y′) +

1

2
mω′2

x x
′2 +

1

2
mω′2

y y
′2, (4)

with x′ = (x + y)/
√

2 and y′ = (x − y)/
√

2. Find ω′
x,y in terms of ω and λ and write

down the exact perturbed ground-state energy E ′
00. Do a series expansion of ω′

x,y out to

second order in λ and check that these terms agree with your results for E
(1)
00 and E

(2)
00

found in part (a). Do the same for the energies E ′
10 and E ′

01 of the first excited states
and compare with your results from part (b).
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2. Compute the energy shift from the anomalous Zeeman perturbation,

∆EB =
eB

2me

〈φ`jmj
|Jz + Sz|φ`jmj

〉, (5)

for the n = 2 states of the hydrogen atom using the “brute force” method of expressing the
eigenstates |φ`jmj

〉 as a linear combination of |m`ms〉 states in order to evaluate the matrix
elements of Sz. (Use the table of Clebsch-Gordan coefficients to get the appropriate linear
combinations.) Compare your results to the shifts found using Eq. (12-24) of the textbook,

∆EB =
eBh̄

2me

mj

(
1 +

j(j + 1)− `(`+ 1) + 3/4

2j(j + 1)

)
. (6)

3. Work out the energies for the Lyman-α transition spectral lines in hydrogen (relative to the
zeroth-order energy ∆E2→1 = (3/4)EBohr

1 ) for the three following situations in the presence

of an external magnetic field ~B = Bẑ:

(a) A fake situation in which the electron has no spin.

(b) The case that the splitting due to the external B-field is very large compared to the fine
structure, so that the fine structure can be ignored (work in the eigenbasis of definite m`

and ms).

(c) The anomalous Zeeman case in which fine structure is a larger effect than the Zeeman
splitting (feel free to use the final results for the energy shifts from the text or lecture).

Note: Remember that this electric dipole transition obeys the selection rules ∆` = ±1, ∆m` =
0,±1 and that an electric dipole transition cannot flip the spin of the electron.

4. (Gasiorowicz 3rd edition problem 12-5) Consider a harmonic oscillator in three dimensions. If
the relativistic expression for the kinetic energy is used, what is the shift in the ground-state
energy?

Hint: treat the relativistic correction as a small perturbation as we did for the hydrogen atom.
Because the harmonic oscillator Hamiltonian can be written as H0 = |~p|2/2m + mω2r2/2 =
|~p|2/2m+ V (x) + V (y) + V (z), where V (x) = mω2x2/2, etc., the three-dimensional harmonic
oscillator can be solved by separation of variables in Cartesian coordinates with the result

ψE(x, y, z) = un1(x)un2(y)un3(z), (7)

where the functions u are the 1-dimensional harmonic oscillator solutions in each direction.
The corresponding energy eigenvalues are E = h̄ω(n1 + n2 + n3 + 3/2).


