Carleton University Physics Department PHYS 4708 (Winter 2016, H. Logan) Homework assignment \#5

Handed out Wed. Mar. 2; due Wed. Mar. 16, 2016 at the start of class. Problems are worth 5 points each unless noted otherwise.

1. [10 points] (Gasiorowicz 3rd ed. problem 15-3) Consider a particle in an infinite well in 1 dimension, with $V(x)=0$ for $0 \leq x \leq a$ and $V(x)=\infty$ everywhere else. A tilt of the potential in the range $0 \leq x \leq a$ is turned on and then off according to

$$
\begin{equation*}
V_{1}(x, t)=\lambda\left(x-\frac{a}{2}\right) e^{-t^{2} / \tau^{2}} \tag{1}
\end{equation*}
$$

(a) Calculate the probability that a particle initially in the ground state $(n=1)$ ends up in the first excited state $(n=2)$.
(b) What is the probability that a particle initially in the ground state ends up in the second excited state $(n=3)$?
(c) What happens to these results as $\tau \rightarrow \infty$? (This shows that for a very slowly varying perturbation, transitions become strongly suppressed. The next problem gives a more general examination of this.)
2. (Very similar to Gasiorowicz 3rd edition problem 15-6) This problem illustrates the adiabatic theorem. The theorem states that if the Hamiltonian is changed very slowly from H_{0} to H, then a system in a given eigenstate of H_{0} goes over into the corresponding eigenstate of H, but does not make any transitions. To be specific, consider the ground state, so that

$$
\begin{equation*}
H_{0} \phi_{0}=E_{0} \phi_{0} \tag{2}
\end{equation*}
$$

Let $V(t)=V f(t)$, where $f(t)$ is a slowly varying function that interpolates monotonically from $f=0$ at $t=0$ to $f=1$ as $t \rightarrow \infty$ as shown in the graph at the bottom of page 244 of the textbook. If the ground state of $H \equiv H_{0}+V$ is $\left|w_{0}\right\rangle$, the theorem states that

$$
\begin{equation*}
\left|\left\langle w_{0} \mid \psi(t)\right\rangle\right| \rightarrow 1 \tag{3}
\end{equation*}
$$

as the time variation of f becomes infinitely slow.
(a) Show that

$$
\begin{equation*}
\frac{1}{i \hbar} \int_{0}^{t} d t^{\prime} e^{i\left(E_{m}^{0}-E_{0}^{0}\right) t^{\prime} / \hbar} f\left(t^{\prime}\right) \rightarrow \frac{-e^{i\left(E_{m}^{0}-E_{0}^{0}\right) t / \hbar}}{E_{m}^{0}-E_{0}^{0}} \tag{4}
\end{equation*}
$$

for times t such that $f(t)=1$. Use the fact that

$$
\begin{equation*}
\frac{d f\left(t^{\prime}\right)}{d t^{\prime}} \ll \frac{E_{m}^{0}-E_{0}^{0}}{\hbar} f\left(t^{\prime}\right) \tag{5}
\end{equation*}
$$

Note: it's most straightforward to use integration by parts; that is, to write

$$
\begin{equation*}
e^{i \omega t^{\prime}}=\frac{1}{i \omega} \frac{d}{d t^{\prime}} e^{i \omega t^{\prime}} \tag{6}
\end{equation*}
$$

(b) Calculate $\psi(t)$ using time-dependent perturbation theory, equations (15-3) and (15-10) in the text. Compare this with the formula for the ground state of H as given by time-independent perturbation theory in equation (11-15), which here reads

$$
\begin{equation*}
\left|w_{0}\right\rangle=\left|\phi_{0}\right\rangle+\sum_{m \neq 0} \frac{\left\langle\phi_{m}\right| V\left|\phi_{0}\right\rangle}{E_{0}^{(0)}-E_{m}^{(0)}}\left|\phi_{m}\right\rangle . \tag{7}
\end{equation*}
$$

Thus show that, in the adiabatic limit,

$$
\begin{equation*}
|\psi(t)\rangle \rightarrow\left|w_{0}\right\rangle e^{-i E_{0}^{(0)} t / \hbar} \tag{8}
\end{equation*}
$$

3. [10 points] (similar to Gasiorowicz 3rd ed. problem 16-1) Consider a particle of mass m in a three-dimensional harmonic oscillator with potential energy $m \omega^{2} r^{2} / 2$. Because the potential is radial, the energy eigenstates can be written in terms of spherical harmonics,

$$
\begin{equation*}
\psi(\vec{r})=R_{n_{r} \ell}(r) Y_{\ell m_{\ell}}(\theta, \phi), \tag{9}
\end{equation*}
$$

where $R_{n_{r} \ell}(r)$ is the radial wavefunction (not the same as the radial wavefunctions of the hydrogen atom). The energy eigenvalues are $E=\hbar \omega\left(2 n_{r}+\ell+3 / 2\right)$, where $n_{r}=0,1,2, \ldots$ and $\ell=0,1,2, \ldots$.
(a) Work out the combinations of n_{r} and ℓ that contribute to the first five energy levels.
(b) Now suppose the particle has charge q and the harmonic oscillator is placed in a weak constant uniform magnetic field \vec{B}. Write down the Schrödinger equation in the presence of this field and treat the new term(s) as a time-independent perturbing Hamiltonian H_{1}. Compute the first-order shifts $E^{(1)}$ in the energies due to this perturbation, and sketch the resulting spectrum (assume that the magnetic energy shifts are small compared to the harmonic oscillator level spacings).
Hint: For a constant uniform magnetic field you can use $\vec{A}=-\vec{r} \times \vec{B} / 2$. For a weak field, you can neglect terms of second order in \vec{A}. The vector identity $\vec{A} \cdot(\vec{B} \times \vec{C})=$ $\vec{B} \cdot(\vec{C} \times \vec{A})=\vec{C} \cdot(\vec{A} \times \vec{B})$ may come in handy.

