Carleton University Physics Department PHYS 4708 (Winter 2016, H. Logan) Homework assignment #1

Handed out Mon. Jan. 11; due Wed. Jan. 20, 2016 at the start of class. *Problems are worth 5 points each unless noted otherwise.*

1. Show that

$$C_{-}(\ell, m) = \hbar \sqrt{(\ell + m)(\ell - m + 1)}$$
(1)

[Eq. (7-24) in Gasiorowicz 3rd edition], where $L_{-}|\ell, m\rangle = C_{-}(\ell, m)|\ell, m-1\rangle$, by following the same steps as done in lecture or Gasiorowicz sec. 7-2 for $C_{+}(\ell, m)$.

2. (Gasiorowicz 3rd edition, problem 10-14) A particle of spin 1 moves in a central potential of the form

$$V(r) = V_1(r) + \frac{\vec{S} \cdot \vec{L}}{\hbar^2} V_2(r) + \frac{(\vec{S} \cdot \vec{L})^2}{\hbar^4} V_3(r).$$
(2)

What are the values of V(r) in the states $j = \ell + 1$, ℓ , and $\ell - 1$? Give your answer in terms of $V_1(r)$, $V_2(r)$, $V_3(r)$, and ℓ .

- 3. Construct the eigenbasis of states $|j, m_j\rangle$ in terms of the eigenbasis $|m_\ell, m_s\rangle$ for $\ell = 1$, s = 1. Check that your results agree with the "1 × 1" section of the table of Clebsch-Gordan coefficients handed out in class.¹ Verify the *j* value of one state in each multiplet of given *j* using the J^2 eigenvalue equation. (Hint: Use repeated application of the J_- operator as done in class. When writing down the orthogonal state of a given m_j , compare to the table of Clebsch-Gordan coefficients to help you choose the sign conventions.)
- 4. A particle with orbital angular momentum $\ell = 1$ and spin s = 1 is in the state $|\Psi\rangle$, which can be expressed in the eigenbasis $|m_{\ell}, m_s\rangle$ as

$$|\Psi\rangle = \frac{1}{\sqrt{2}}|+1,-1\rangle + \frac{1}{\sqrt{2}}|0,0\rangle.$$
 (3)

- (a) Re-express $|\Psi\rangle$ in the $|j, m_j\rangle$ eigenbasis (use the results of problem 3 and/or a table of Clebsch-Gordan coefficients).
- (b) Using in each case the most sensible choice of basis, compute the expectation values of L_z , S_z , J^2 , and J_z in the state Ψ .

continued....

¹This table can be downloaded from the Particle Data Group website at http://pdg.lbl.gov > Reviews, Tables, Plots > Mathematical Tools > Clebsch-Gordan coeff., sph. harmonics, and d functions.

5. Consider again a particle with orbital angular momentum $\ell = 1$ and spin s = 1 in the state $|\Psi\rangle$, which can be expressed in the eigenbasis $|m_{\ell}, m_s\rangle$ as in problem 4 as

$$|\Psi\rangle = \frac{1}{\sqrt{2}}|+1,-1\rangle + \frac{1}{\sqrt{2}}|0,0\rangle.$$
 (4)

- (a) If you were to measure L_z in this state, what would be the possible outcomes and their probabilities?
- (b) If you were to measure J^2 in this state, what would be the possible outcomes and their probabilities?
- (c) Now imagine that you make the measurement of J^2 in this state and get the value $6\hbar^2$. What is the new state of the particle after the measurement? Express this new state in both the $|j, m_i\rangle$ and the $|m_\ell, m_s\rangle$ eigenbases.
- (d) If you were to measure L_z in this new state, what would be the possible outcomes and their probabilities?