Carleton University Physics Department PHYS 4708 (Winter 2015, H. Logan) Midterm exam

This exam is closed-book and -notes. The three questions will be weighted equally.

1. Consider a system of two spin- 1 particles with total angular momentum $\vec{J}=\vec{S}_{1}+\vec{S}_{2}$. In certain materials, various effects conspire to create an effective interaction $V=-\lambda \vec{S}_{1} \cdot \vec{S}_{2}$ between neighbouring spins, where λ is a positive number.
(a) Compute the energy shifts caused by V. Use the appropriate basis in accordance with degenerate perturbation theory.
(b) Consider the set of states with $j=2$ and $m_{j}=-j, \ldots, j$. Which of these states are eigenstates of $S_{1 z} S_{2 z}$, and what are the corresponding eigenvalues? For the state(s) that are not eigenstates of $S_{1 z} S_{2 z}$, compute the expectation value of $S_{1 z} S_{2 z}$. (Use the table of Clebsch-Gordan coefficients provided.)
(c) Use the results of parts (a) and (b) to determine the expectation value of ($S_{1 x} S_{2 x}+S_{1 y} S_{2 y}$) in each of the states with $j=2$.
2. Consider a one-dimensional harmonic oscillator with unperturbed Hamiltonian

$$
\begin{equation*}
H_{0}=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2} \tag{1}
\end{equation*}
$$

with eigenstates $|n\rangle$ whose energies are $E_{n}^{(0)}=\hbar \omega(n+1 / 2)$. It is subject to a perturbing Hamiltonian

$$
\begin{equation*}
H_{1}=\lambda x^{2} . \tag{2}
\end{equation*}
$$

(a) Compute the first-order energy shift $E_{n}^{(1)}$ of level n of this harmonic oscillator. You can use the expression for x in terms of raising and lowering operators,

$$
\begin{equation*}
x=\sqrt{\frac{\hbar}{2 m \omega}}\left(a+a^{\dagger}\right), \tag{3}
\end{equation*}
$$

where $a|n\rangle=\sqrt{n}|n-1\rangle$ and $a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$.
(b) Compute the first-order correction to the energy eigenstates (i.e., find the new eigenstates $\left|\psi_{n}\right\rangle$ in terms of the original eigenstates $\left.\left|\phi_{n}\right\rangle \equiv|n\rangle\right)$.
(c) Compute the second-order energy shift $E_{n}^{(2)}$ of level n.
(d) This problem can be solved exactly by writing

$$
\begin{equation*}
H=H_{0}+H_{1}=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{\prime 2} x^{2} \tag{4}
\end{equation*}
$$

Find ω^{\prime} in terms of ω and λ and write down the exact perturbed energies E_{n}^{\prime}. Do a series expansion of ω^{\prime} out to second order in λ and check that these terms agree with your results for $E_{n}^{(1)}$ and $E_{n}^{(2)}$ found above.
3. Consider a system of two spin-1 particles. The total angular momentum is $\vec{J}=\vec{S}_{1}+\vec{S}_{2}$.
(a) Make a table showing the combinations of $m_{s 1}$ and $m_{s 2}$ that can contribute to each m_{j} value. What are the allowed values of j ?
(b) Write down the state $\left|j=2, m_{j}=2\right\rangle$ in terms of the $\left|m_{s 1}, m_{s 2}\right\rangle$ basis states. Show that this state is an eigenstate of the exchange operator P_{12}, which swaps particle 1 for particle 2, and find its eigenvalue. Then use the fact that $\left[J_{ \pm}, P_{12}\right]=0$ (first convince yourself that this is true!) to write down the states $\left|j=2, m_{j}=1\right\rangle$ and $\left|j=2, m_{j}=-1\right\rangle$ in terms of the $\left|m_{s 1}, m_{s 2}\right\rangle$ basis states. What can you say about the state $\left|j=2, m_{j}=0\right\rangle$ using just the exchange operator?
(c) Use orthogonality to write down the state $\left|j=1, m_{j}=1\right\rangle$ in terms of the $\left|m_{s 1}, m_{s 2}\right\rangle$ basis states. What is its P_{12} eigenvalue? Use this result to write down the state $\left|j=1, m_{j}=0\right\rangle$ in terms of the $\left|m_{s 1}, m_{s 2}\right\rangle$ basis states.
(d) Based on your result for part (c), what can you say about the P_{12} eigenvalue of the state $\left|j=0, m_{j}=0\right\rangle$?

Formula sheet

Schrödinger equation:

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \Psi(\vec{r}, t)=H \Psi(\vec{r}, t) \tag{5}
\end{equation*}
$$

Energy eigenstates: $\quad H=\vec{p}^{2} / 2 m+V(\vec{r})$

$$
\begin{equation*}
H \psi(\vec{r})=E \psi(\vec{r}), \quad \Psi(\vec{r}, t)=\psi(\vec{r}) e^{-i E t / \hbar} \tag{6}
\end{equation*}
$$

Differential operators corresponding to momentum and energy:

$$
\begin{equation*}
\vec{p} \rightarrow-i \hbar \vec{\nabla} \quad E \rightarrow i \hbar \frac{\partial}{\partial t} \tag{7}
\end{equation*}
$$

Harmonic oscillator in 1 dimension:

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}, \quad H|n\rangle=E_{n}|n\rangle, \quad E_{n}=\hbar \omega(n+1 / 2) \tag{8}
\end{equation*}
$$

Raising and lowering operators:

$$
\begin{align*}
a|n\rangle & =\sqrt{n}|n-1\rangle, \quad a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle, \tag{9}\\
x & =\sqrt{\frac{\hbar}{2 m \omega}}\left(a+a^{\dagger}\right), \quad p_{x}=-i \sqrt{\frac{m \omega \hbar}{2}}\left(a-a^{\dagger}\right) \tag{10}
\end{align*}
$$

Harmonic oscillator in 3 dimensions (isotropic), $H=\vec{p}^{2} / 2 m+m \omega^{2} \vec{r}^{2} / 2=H_{x}+H_{y}+H_{z}$: spatial wavefunctions are just the products of the solutions of the 1-dim harmonic oscillator.

$$
\begin{equation*}
H\left|n_{1} n_{2} n_{3}\right\rangle=E_{n_{1} n_{2} n_{3}}\left|n_{1} n_{2} n_{3}\right\rangle, \quad E_{n_{1} n_{2} n_{3}}=\hbar \omega\left(n_{1}+n_{2}+n_{3}+3 / 2\right) \tag{11}
\end{equation*}
$$

the wavefunctions can also be written in terms of the spherical harmonics,

$$
\begin{equation*}
\left\langle\vec{r} \mid n_{r} \ell m\right\rangle=R_{n_{r} \ell}(r) Y_{\ell m}(\theta, \phi), \quad E_{n_{r} \ell m}=\hbar \omega\left(2 n_{r}+\ell+3 / 2\right) . \tag{12}
\end{equation*}
$$

Particle in a box (infinite square well), 1 dimensional:

$$
\begin{equation*}
\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}, \quad 0 \leq x \leq L, \quad E_{n}=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}} n^{2} \tag{13}
\end{equation*}
$$

Particle in a box, 3 dimensional, $L \times L \times L$, one corner at the origin:

$$
\begin{equation*}
\psi(x, y, z)=\left(\frac{2}{L}\right)^{3 / 2} \sin \frac{n_{1} \pi x}{L} \sin \frac{n_{2} \pi y}{L} \sin \frac{n_{3} \pi z}{L}, \quad E=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}}\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right) \tag{14}
\end{equation*}
$$

Angular momentum:

$$
\begin{gather*}
L^{2}|\ell, m\rangle=\hbar^{2} \ell(\ell+1)|\ell, m\rangle, \tag{15}\\
L_{z}|\ell, m\rangle=\hbar m|\ell, m\rangle, \quad m_{\max }=\ell \tag{16}\\
L_{ \pm}=L_{x} \pm i L_{y}, \quad\left[L^{2}, L_{ \pm}\right]=0, \tag{17}\\
C_{+}(\ell, m)=\hbar \sqrt{(\ell-m)(\ell+m+1)}, \tag{18}\\
L_{ \pm}|\ell, m\rangle=C_{ \pm}(\ell, m)|\ell, m \pm 1\rangle \\
\vec{L}=\vec{r} \times \vec{p} \quad \text { so, e.g., } L_{z}=x p_{y}-y p_{x} .
\end{gather*}
$$

Addition of angular momentum: when $\vec{J}=\vec{L}+\vec{S}$,

$$
\begin{equation*}
j=\ell+s, \ldots,|\ell-s|, \quad J_{z}=L_{z}+S_{z}, \quad J_{ \pm}=L_{ \pm}+S_{ \pm} \tag{19}
\end{equation*}
$$

Spherical harmonics, up to $\ell=2$:

$$
\begin{align*}
Y_{00}= & \frac{1}{\sqrt{4 \pi}} \\
Y_{11}= & Y_{\ell m}(-\hat{r})=(-1)^{\ell} Y_{\ell m}(\hat{r}) \\
Y_{22}= & \sqrt{\frac{15}{8 \pi}} \sin \theta e^{i \phi} \sin ^{2} \theta e^{2 i \phi} \quad Y_{10}=\sqrt{\frac{3}{4 \pi}} \cos \theta \quad Y_{21}=-\sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{i \phi} \quad Y_{1,-1}=\sqrt{\frac{3}{8 \pi}} \sin \theta e^{-i \phi} \\
& Y_{20,-1}=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right) \\
& \quad Y_{2,-2}=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{-2 i \phi} \tag{20}
\end{align*}
$$

Pauli principle: under the exchange of any two identical particles, multi-particle wavefunctions are symmetric for bosons (integer spin), antisymmetric for fermions (half-odd-integer spin).
Time-independent perturbation theory:

$$
\begin{gather*}
H=H_{0}+\lambda H_{1}, \quad H_{0}\left|\phi_{n}\right\rangle=E_{n}^{(0)}\left|\phi_{n}\right\rangle, \quad H\left|\psi_{n}\right\rangle=E_{n}\left|\psi_{n}\right\rangle \tag{21}\\
E_{n}=E_{n}^{(0)}+E_{n}^{(1)}+E_{n}^{(2)}+\cdots \tag{22}\\
E_{n}^{(1)}=\left\langle\phi_{n}\right| \lambda H_{1}\left|\phi_{n}\right\rangle \quad E_{n}^{(2)}=\sum_{k \neq n} \frac{\left.\left|\left\langle\phi_{n}\right| \lambda H_{1}\right| \phi_{k}\right\rangle\left.\right|^{2}}{E_{n}^{(0)}-E_{k}^{(0)}} \tag{23}\\
\left|\psi_{n}\right\rangle=\left|\phi_{n}\right\rangle+\sum_{k \neq n} \frac{\left\langle\phi_{k}\right| \lambda H_{1}\left|\phi_{n}\right\rangle}{E_{n}^{(0)}-E_{k}^{(0)}}\left|\phi_{k}\right\rangle+\mathcal{O}\left(\lambda^{2}\right) \tag{24}
\end{gather*}
$$

Degenerate perturbation theory: first find the combinations of states that diagonalize the matrix $\left\langle\phi_{i}\right| \lambda H_{1}\left|\phi_{j}\right\rangle$ made up of states degenerate at zeroth order. The eigenvalues of this matrix are $E_{n}^{(1)}$.
Time-dependent perturbation theory:

$$
\begin{gather*}
H_{0}\left|\phi_{n}\right\rangle=E_{n}^{(0)}\left|\phi_{n}\right\rangle, \quad i \hbar \frac{d}{d t}|\psi(t)\rangle=\left(H_{0}+\lambda V(t)\right)|\psi(t)\rangle \tag{25}\\
|\psi(t)\rangle=\sum_{n} c_{n}(t) e^{-i E_{n}^{(0)} t / \hbar}\left|\phi_{n}\right\rangle \tag{26}
\end{gather*}
$$

For $c_{k}(0)=1$ and all other $c_{n}(0)=0$, to first order in λ the coefficients are

$$
\begin{equation*}
c_{m}(t)=\frac{1}{i \hbar} \int_{0}^{t} d t^{\prime} e^{i \omega_{m k} t^{\prime}}\left\langle\phi_{m}\right| \lambda V\left(t^{\prime}\right)\left|\phi_{k}\right\rangle \tag{27}
\end{equation*}
$$

where $\omega_{m k}=\left(E_{m}^{(0)}-E_{k}^{(0)}\right) / \hbar$. The transition probability is $P_{k \rightarrow m}(t)=\left|c_{m}(t)\right|^{2}$.
Variational principle: for any wavefunction $|\Psi\rangle,\langle\Psi| H|\Psi\rangle \geq E_{0}=$ ground state energy of H.
Some math:
Taylor series about $x=0$:

$$
\begin{equation*}
f(x)=\left.\sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^{n} f}{d x^{n}}\right|_{x=0} x^{n} \tag{28}
\end{equation*}
$$

Eigenvalues of a matrix M (I is the unit matrix; solve for λ):

$$
\begin{equation*}
\operatorname{det}(M-\lambda \cdot I)=0 \tag{29}
\end{equation*}
$$

40. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS, AND d FUNCTIONS

Note: A square-root sign is to be understood over every coefficient, e.g., for $-8 / 15$ read $-\sqrt{8 / 15}$.

$\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} J M\right\rangle$
$=(-1)^{J-j_{1}-j_{2}}\left\langle j_{2} j_{1} m_{2} m_{1} \mid j_{2} j_{1} J M\right\rangle$

Figure 40.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957), and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).

