Carleton University Physics Department PHYS 4708 (Winter 2015, H. Logan) Homework assignment \#7

Handed out Mon. Mar. 16; due Wed. Mar. 25, 2015 at the start of class. Problems are worth 5 points each unless noted otherwise.

1. [10 points] (Gasiorowicz 3rd edition problem 17-4) Calculate the " $2 p \rightarrow 1 s$ " transition rate for a 3-dimensional harmonic oscillator. In this case the energy eigenvalues are given by $E=\hbar \omega(n+3 / 2)$ where $n \equiv 2 n_{r}+\ell$, where $n_{r}=0,1,2, \ldots$ is the radial quantum number and $\ell=0,1,2, \ldots$ is the usual total angular momentum quantum number. (Hint: we are interested in the transition from the first excited state to the ground state, in the electric dipole approximation. You do not necessarily have to work in spherical coordinates.)
2. [10 points] (Gasiorowicz 3rd edition problem 17-2) The matrix element for electromagnetic transitions can be expanded in powers of $\vec{k} \cdot \vec{r}$ to give

$$
\begin{equation*}
\left\langle\phi_{f}\right| e^{-i \vec{k} \cdot \vec{r}} \vec{\varepsilon} \cdot \vec{p}\left|\phi_{i}\right\rangle=\left\langle\phi_{f}\right| \vec{\varepsilon} \cdot \vec{p}\left|\phi_{i}\right\rangle+\left\langle\phi_{f}\right|-i \vec{k} \cdot \vec{r} \vec{\varepsilon} \cdot \vec{p}\left|\phi_{i}\right\rangle+\cdots \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\vec{k} \cdot \vec{r} \vec{\varepsilon} \cdot \vec{p}=\frac{1}{2}(\vec{\varepsilon} \cdot \vec{p} \vec{k} \cdot \vec{r}+\vec{\varepsilon} \cdot \vec{r} \vec{p} \cdot \vec{k})+\frac{1}{2}(\vec{k} \times \vec{\varepsilon}) \cdot(\vec{r} \times \vec{p}) \tag{2}
\end{equation*}
$$

(see Eq. (17-35) of Gasiorowicz). Show that the first term in Eq. (2) above, called the electric quadrupole term, leads to $\Delta \ell=2$ transitions by evaluating the term between a state $Y_{\ell m}(\theta, \phi)$ and the ground state Y_{00}.
3. Consider the following wavefunction for a spherical wave with angular part described by the ℓ th Legendre polynomial:

$$
\begin{equation*}
\psi(\vec{r})=C \frac{e^{ \pm i k r}}{r} P_{\ell}(\cos \theta) \tag{3}
\end{equation*}
$$

Compute the three-dimensional probability current density \vec{j} (all three components) in spherical coordinates for $\ell=0,1$, and 2 . In each case, integrate over a sphere of radius r to get the total inward- or outward-going flux.
For convenience, the three-dimensional probability current density is

$$
\begin{equation*}
\vec{j}=\frac{\hbar}{2 i m}\left(\psi^{*} \vec{\nabla} \psi-\psi \vec{\nabla} \psi^{*}\right), \tag{4}
\end{equation*}
$$

the gradient in spherical coordinates is given by

$$
\begin{equation*}
\vec{\nabla} \psi=\hat{r} \frac{\partial \psi}{\partial r}+\hat{\theta} \frac{1}{r} \frac{\partial \psi}{\partial \theta}+\hat{\varphi} \frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \varphi} \tag{5}
\end{equation*}
$$

and the first three Legendre polynomials are

$$
\begin{equation*}
P_{0}(\cos \theta)=1, \quad P_{1}(\cos \theta)=\cos \theta, \quad P_{2}(\cos \theta)=\frac{3}{2} \cos ^{2} \theta-\frac{1}{2} . \tag{6}
\end{equation*}
$$

