Carleton University Physics Department
 PHYS 4708 (Winter 2015, H. Logan)
 Homework assignment \#3

Handed out Wed. Jan. 28, 2015; due Mon. Feb. 9 at the start of class.
Problems are worth 5 points each unless noted otherwise.

1. [10 points] (similar to Gasiorowicz 3rd ed. problem 11-11) Consider a two-dimensional harmonic oscillator with unperturbed Hamiltonian

$$
\begin{equation*}
H_{0}=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}\right)+\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}\right) \tag{1}
\end{equation*}
$$

with eigenstates $\left|n_{x} n_{y}\right\rangle$ whose energies are $E_{n_{x} n_{y}}^{(0)}=\hbar \omega\left(n_{x}+n_{y}+1\right)$. It is subject to a perturbing Hamiltonian

$$
\begin{equation*}
H_{1}=2 \lambda x y . \tag{2}
\end{equation*}
$$

(a) Compute the first- and second-order energy shifts $E_{00}^{(1)}$ and $E_{00}^{(2)}$ of the ground state of this harmonic oscillator. You can use the expression for x in terms of raising and lowering operators,

$$
\begin{equation*}
x=\sqrt{\frac{\hbar}{2 m \omega}}\left(a_{x}+a_{x}^{\dagger}\right), \tag{3}
\end{equation*}
$$

where $a_{x}\left|n_{x}\right\rangle=\sqrt{n_{x}}\left|n_{x}-1\right\rangle$ and $a_{x}^{\dagger}\left|n_{x}\right\rangle=\sqrt{n_{x}+1}\left|n_{x}+1\right\rangle$ and the analogous expression for y.
(b) Compute the first-order energy shifts of the two states that make up the first excited energy level of the original Hamiltonian. (Here you'll need to use degenerate perturbation theory.)
(c) This problem can be solved exactly by writing

$$
\begin{equation*}
H=H_{0}+H_{1}=\frac{1}{2 m}\left(p_{x^{\prime}}^{2}+p_{y^{\prime}}^{2}\right)+\frac{1}{2} m \omega_{x}^{\prime 2} x^{\prime 2}+\frac{1}{2} m \omega_{y}^{\prime 2} y^{\prime 2}, \tag{4}
\end{equation*}
$$

with $x^{\prime}=(x+y) / \sqrt{2}$ and $y^{\prime}=(x-y) / \sqrt{2}$. Find $\omega_{x, y}^{\prime}$ in terms of ω and λ and write down the exact perturbed ground-state energy E_{00}^{\prime}. Do a series expansion of $\omega_{x, y}^{\prime}$ out to second order in λ and check that these terms agree with your results for $E_{00}^{(1)}$ and $E_{00}^{(2)}$ found in part (a). Do the same for the energies E_{10}^{\prime} and E_{01}^{\prime} of the first excited states and compare with your results from part (b).
2. Compute the energy shift from the anomalous Zeeman perturbation,

$$
\begin{equation*}
\Delta E_{B}=\frac{e B}{2 m_{e}}\left\langle\phi_{\ell j m_{j}}\right| J_{z}+S_{z}\left|\phi_{\ell j m_{j}}\right\rangle, \tag{5}
\end{equation*}
$$

for the $n=2$ states of the hydrogen atom using the "brute force" method of expressing the eigenstates $\left|\phi_{\ell j m_{j}}\right\rangle$ as a linear combination of $\left|m_{\ell} m_{s}\right\rangle$ states in order to evaluate the matrix elements of S_{z}. (Use the table of Clebsch-Gordan coefficients to get the appropriate linear combinations.) Compare your results to the shifts found using Eq. (12-24) of the textbook,

$$
\begin{equation*}
\Delta E_{B}=\frac{e B \hbar}{2 m_{e}} m_{j}\left(1+\frac{j(j+1)-\ell(\ell+1)+3 / 4}{2 j(j+1)}\right) \tag{6}
\end{equation*}
$$

3. Work out the energies for the Lyman- α transition spectral lines in hydrogen (relative to the zeroth-order energy $\left.\Delta E_{2 \rightarrow 1}=(3 / 4) E_{1}^{\mathrm{Bohr}}\right)$ for the three following situations in the presence of an external magnetic field $\vec{B}=B \hat{z}$:
(a) A fake situation in which the electron has no spin.
(b) The case that the splitting due to the external B-field is very large compared to the fine structure, so that the fine structure can be ignored (work in the eigenbasis of definite m_{ℓ} and m_{s}).
(c) The anomalous Zeeman case in which fine structure is a larger effect than the Zeeman splitting (feel free to use the final results for the energy shifts from the text or lecture).

Note: Remember that this electric dipole transition obeys the selection rules $\Delta \ell= \pm 1, \Delta m_{\ell}=$ $0, \pm 1$ and that an electric dipole transition cannot flip the spin of the electron.
4. (Gasiorowicz 3rd edition problem 12-5) Consider a harmonic oscillator in three dimensions. If the relativistic expression for the kinetic energy is used, what is the shift in the ground-state energy?
Hint: treat the relativistic correction as a small perturbation as we did for the hydrogen atom. Because the harmonic oscillator Hamiltonian can be written as $H_{0}=|\vec{p}|^{2} / 2 m+m \omega^{2} r^{2} / 2=$ $|\vec{p}|^{2} / 2 m+V(x)+V(y)+V(z)$, where $V(x)=m \omega^{2} x^{2} / 2$, etc., the three-dimensional harmonic oscillator can be solved by separation of variables in Cartesian coordinates with the result

$$
\begin{equation*}
\psi_{E}(x, y, z)=u_{n_{1}}(x) u_{n_{2}}(y) u_{n_{3}}(z) \tag{7}
\end{equation*}
$$

where the functions u are the 1-dimensional harmonic oscillator solutions in each direction. The corresponding energy eigenvalues are $E=\hbar \omega\left(n_{1}+n_{2}+n_{3}+3 / 2\right)$.

