Carleton University Physics Department PHYS 4708 (Winter 2015, H. Logan) Homework assignment \#1

Handed out Wed. Jan. 7, 2015; due Mon. Jan. 19 at the start of class. Problems are worth 5 points each unless noted otherwise.

1. Show that

$$
\begin{equation*}
C_{-}(\ell, m)=\hbar \sqrt{(\ell+m)(\ell-m+1)} \tag{1}
\end{equation*}
$$

[Eq. (7-24) in Gasiorowicz 3rd edition], where $L_{-}|\ell, m\rangle=C_{-}(\ell, m)|\ell, m-1\rangle$, by following the same steps as done in lecture or Gasiorowicz sec. 7-2 for $C_{+}(\ell, m)$.
2. (Gasiorowicz 3rd edition, problem 10-14) A particle of spin 1 moves in a central potential of the form

$$
\begin{equation*}
V(r)=V_{1}(r)+\frac{\vec{S} \cdot \vec{L}}{\hbar^{2}} V_{2}(r)+\frac{(\vec{S} \cdot \vec{L})^{2}}{\hbar^{4}} V_{3}(r) \tag{2}
\end{equation*}
$$

What are the values of $V(r)$ in the states $j=\ell+1, \ell$, and $\ell-1$?
3. Construct the eigenbasis of states $\left|j, m_{j}\right\rangle$ in terms of the eigenbasis $\left|m_{\ell}, m_{s}\right\rangle$ for $\ell=1, s=$ 1. Check that your results agree with the " 1×1 " section of the table of Clebsch-Gordan coefficients handed out in class. ${ }^{1}$ Verify the j value of one state in each multiplet of given j using the J^{2} eigenvalue equation. (Hint: Use repeated application of the J_{-}operator as done in class. When writing down the orthogonal state of a given m_{j}, compare to the table of Clebsch-Gordan coefficients to help you choose the sign conventions.)
4. A particle with orbital angular momentum $\ell=1$ and $\operatorname{spin} s=1$ is in the state $|\Psi\rangle$, which can be expressed in the eigenbasis $\left|m_{\ell}, m_{s}\right\rangle$ as

$$
\begin{equation*}
|\Psi\rangle=\frac{1}{\sqrt{2}}|+1,-1\rangle+\frac{1}{\sqrt{2}}|0,0\rangle . \tag{3}
\end{equation*}
$$

(a) Re-express $|\Psi\rangle$ in the $\left|j, m_{j}\right\rangle$ eigenbasis (use the results of problem 3 and/or a table of Clebsch-Gordan coefficients).
(b) Using in each case the most sensible choice of basis, compute the expectation values of L_{z}, S_{z}, J^{2}, and J_{z} in the state Ψ.
continued....

[^0]5. Consider again a particle with orbital angular momentum $\ell=1$ and $\operatorname{spin} s=1$ in the state $|\Psi\rangle$, which can be expressed in the eigenbasis $\left|m_{\ell}, m_{s}\right\rangle$ as in problem 4 as
\[

$$
\begin{equation*}
|\Psi\rangle=\frac{1}{\sqrt{2}}|+1,-1\rangle+\frac{1}{\sqrt{2}}|0,0\rangle . \tag{4}
\end{equation*}
$$

\]

(a) If you were to measure L_{z} in this state, what would be the possible outcomes and their probabilities?
(b) If you were to measure J^{2} in this state, what would be the possible outcomes and their probabilities?
(c) Now imagine that you make the measurement of J^{2} in this state and get the value $6 \hbar^{2}$. What is the new state of the particle after the measurement? Express this new state in both the $\left|j, m_{j}\right\rangle$ and the $\left|m_{\ell}, m_{s}\right\rangle$ eigenbases.
(d) If you were to measure L_{z} in this new state, what would be the possible outcomes and their probabilities?

[^0]: ${ }^{1}$ This table can be downloaded from the Particle Data Group website at http://pdg.lbl.gov > Reviews, Tables, Plots $>$ Mathematical Tools $>$ Clebsch-Gordan coeff., sph. harmonics, and d functions.

