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Motivation to Study Group Theory

Study of the symmetries respected by physical systems

gives us insight into those systems. Symmetries arise

as a consequence of unmeasurability (non-observability)

or indistinguishability in nature. For instance, if we say

that space is homogeneous or, in other words, that we

cannot measure an absolute position in space, this is a

symmetry. The system is invariant under the symmetry

transformation of spatial translation.

Group theory is the study of symmetry transformations

that have particular “group properties”. The consequences

of such symmetries can be profound. For the exam-

ple of invariance under spatial transformation, the con-

sequence is conservation of linear momemtum.

Group theory is important because symmetries alone

give useful information about a physical system, quite

apart from the details of that system. The existence of

symmetries allows one to draw general conclusions.

2



Consequences of symmetries include:

• conservation laws

• identification of conserved quantum numbers (use-

ful for symmetry labels and for understanding energy

degeneracy)

• selection rules

• relations between matrix elements for observables

• simplification

Stancu makes a useful breakdown of various types of

symmetries as follows.

1. Discrete permutation symmetries

2. Continuous space-time symmetries

3. Discrete space-time symmetries

4. Continuous internal symmetries

5. Discrete internal symmetries
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1. Discrete permutation symmetries

In quantum systems, we expect physical observables to

be invariant under the exchange - permutation - of iden-

tical particles. Such transformations constitute the per-

mutation or symmetric group Sn. The indistinguishabil-

ity of identical particles, as realized via this permutation

symmetry, leads to the formulation of Bose-Einstein and

Fermi-Dirac statistics. Also, the symmetric group is re-

lated to some other important continuous groups. Con-

sequently, there is a further practical advantage to study-

ing its properties.

2. Continuous space-time symmetries

These are probably most familiar to us - from classical

physics and extended to quantum physics. The transfor-

mations include:

• Spatial translations, ~x → ~x′ = ~x + ~a, based on the

assumption of the homogeneity of space.

This is valid for an isolated system (with no external field)
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such that the potential describing the system does not

depend on the position of the origin of coordinates. The

consequence is the conservation of linear momentum.

• Rotations in three dimensions, xi → x′i = Rijxj with

i, j = 1, 2, 3 and Rij a length preserving rotation ma-

trix. This arises from the assumption of spatial isotropy

- no preferred direction - and is again valid for isolated

systems. The properties of a system obeying this sym-

metry do not depend on orientation in space. The con-

sequence is conservation of angular momentum.

• Time translation, t → t′ = t + t0, arises from the

assumption of homogeneity of time - no absolute time.

Given the same physical conditions, the same phenom-

ena can be reproduced at any time. This is valid for con-

servative systems that are isolated or subject to a time-

independent external field. (The Lagrangian or Hamilto-

nian describing the system has no explicit time depen-

dence.). The consequence is conservation of energy.
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• Lorentz transformations, xµ → x′µ = Λµ
νxν , include

rotations as above and boosts such that systems moving

with respect to each other measure the same velocity

of light. Valid in special relativity for inertial reference

frames.

3. Discrete space-time symmetries

Examples of these symmetries include:

• Spatial Periodicity, such that, for instance, a crystal

lattice is invariant under translations ~x → ~x′ = ~x + ~A

where ~A is a constant rather than a continuous variable.

This type of symmetry extends to the point groups of

solid state physics.

• Spatial inversion or reflection invariance arises from in-

distinguishability of left and right in a system. The parity

operator P acts as P~x = ~x′ = −~x. Operating twice

with P restores the original system. A consequence of

this symmetry is that quantum mechanical states can be

characterized by even and odd wave functions.
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• Time reversal is the operation associated with the un-

measurability of the direction of the flow of time, such

that T t = t′ = −t.

4. Continuous internal symmetries

These more abstract symmetries act in the space of in-

ternal degrees of freedom. In particle physics, these in-

clude isospin, hypercharge, color, and flavor symmetries

as well as gauge symmetries. They can lead to the con-

servation of “generalized charges”, including actual elec-

tromagnetic charge, lepton number, etc.

5. Discrete internal symmetries

In particle physics, these include the charge conjugation

symmetry C, transforming particle to anti-particle and G-

parity, which consists of charge conjugation followed by

a rotation through π in isospin space.
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• Not all the above symmetries are exact.

• Even approximate symmetries can be useful.

• Symmetries are spontaneously broken when the vac-

uum does not respect the overall symmetry of the

system.

• Continuous symmetries are defined in terms of con-

tinuous parameters:

Global - independent of space-time

Local - space-time dependent - further consequences

arise giving system dynamics
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The Consequences of Symmetry

Consider two simple classical systems in Newtonian frame-

work, followed more generally with a Lagrangian/Hamiltonian

formulation.

1. Isolated system (not subject to external force) of 2

particles

- Assume absolute position is not measurable

- Relative to origin O, position of particle i labeled by ~ri

- Origin O′ located at −~a relative to O, such that ~r′i =

~ri + ~a

- The potential describing the interaction of the two par-

ticles must satisfy

V (~r1, ~r2) = V (~r1 + ~a, ~r2 + ~a)

⇒ V = V (~r1 − ~r2)
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- With the notation that ~∇i represents the gradient with

respect to the coordinates of particle i:

~Fi = −~∇iV

- Thus, the total force

~F = ~F1 + ~F2 = −~∇1V − ~∇2V = 0

- But the total force is

~F =
d~p

dt
= 0

⇒ ~p is constant

This demonstrates the line of reasoning: an assumption

of unmeasurability of absolute position expressed as an

invariance under spatial translation yields conservation

of linear momentum.
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2. Single particle in rotationally symmetric potential

- Assume a 2-d system is rotationally symmetric

- Single particle of mass m in 2-d potential

⇒ V (r, θ) = V (r)

∂V

∂θ
= 0 =

∂V

∂x

∂x

∂θ
+
∂V

∂y

∂y

∂θ

- Using the relation between (x, y) and (r, θ) and the

equations of motion mẍ = −∂V
∂x

and mÿ = −∂V
∂y

,

∂V

∂θ
= 0 = −y

∂V

∂x
+ x

∂V

∂y
= y(mẍ) − x(mÿ)

= −
d

dt
(~r × ~p)z = −

d

dt
Lz = 0

⇒ Angular momentum is conserved.

We see the same line of reasoning followed.
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3. Lagrangian formulation

Consider a Lagrangian that is a function of the gener-

alized coordinates qi, the generalized velocities q̇i, and

possibly time t - L(qi, q̇i, t).

- Assuming Hamilton’s principle δ
∫ t2
t1
L(qi, q̇i, t)dt = 0

leads to Euler-Lagrange equations:

d

dt
(
∂L

∂q̇i
) −

∂L

∂qi
= 0

- Assuming a symmetry such that L is independent of qi
(invariance under “translation”) yields

∂L

∂qi
= 0 =

d

dt
(
∂L

∂q̇i
)

⇒ pi = ∂L
∂q̇i

= constant

These generalized (or conjugate) momenta are conserved

Invariance under translation in the generalized coordi-

nate qi implies conservation of the corresponding gen-

eralized momentum pi = ∂L
∂q̇i

.
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Consider next the assumption of homogeneity of time

which implies the Lagrangian has no explicit time depen-

dence, ∂L
∂t

= 0. Thus

dL

dt
=
∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i =

d

dt
(q̇i
∂L

∂q̇i
)

where the Euler-Lagrange equations have been used in

the last step. Thus

d

dt
(L− q̇i

∂L

∂q̇i
) = 0

Since L = T − V , with T (V ) the kinetic (potential)

energy and since, in a scleronomic system (that is, one

with no explicit time dependence in the transformation

equations xα,i = xα,i(qj, t) with α a particle label) the

second term above is 2T (Euler’s theorem), we have

⇒ d
dt

(T + V ) = 0

Energy conservation arises as a consequence of the as-

sumption of homogeneity of time.
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Unmeasurability

of

invariance under conservation of

Absolute spatial

position

spatial translation linear momentum

Absolute time time translation energy

Absolute spatial

direction

spatial rotation angular momentum
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Express the connection between invariance principle and

conservation law via classical Poisson brackets

For two continuous functions of generalized coordinates

and momenta, f(qi, pi) and h(qi, pi)

{f, h} ≡
∑

i

(
∂f

∂qi

∂h

∂pi
−
∂f

∂pi

∂h

∂qi
)

If the Poisson bracket vanishes, we say f and h commute.

Consider the Hamiltonian H ≡ T + V = H(qi, pi).

Hamilton’s equations of motion are

ṗi = −∂H
∂qi

and q̇i = ∂H
∂pi

For F (qi, pi) a dynamical variable with no explicit time

dependence

dF

dt
= Ḟ =

∂F

∂qi
q̇i +

∂F

∂pi
ṗi

=
∂F

∂qi

∂H

∂pi
−
∂F

∂pi

∂H

∂qi
= {F,H}

{F,H} = 0 implies that F is a constant of the motion.

15



Symmetries in quantum physics

The classical Poisson bracket relation Ḟ = {F,H} cor-

responds, for A an operator and H the quantum me-

chanical Hamiltonian, to the quantum relation

dA

dt
=
∂A

∂t
+

1

ih̄
[A,H]

in the Heisenberg picture with time independent state

vectors.

Thus if

1. A is Hermitian

2. A has no explicit time dependence and

3. A commutes with the Hamiltonian

⇒ A represents a conserved observable

dA
dt

= 0 is equivalent to d〈A〉
dt

= 0 implying that the

eigenvalues of A are constant.

We can develop this in an alternate way.
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State ψ satisfies the Schrodinger equationHψ = ih̄∂ψ
∂t

The expectation value of an operator A is

〈A〉 = (ψ,Aψ) = 〈ψ|Aψ〉

=
∫

d3xψ∗(x, t)Aψ(x, t)

So the rate of change of the expectation value is

d 〈A〉

dt
= (

∂ψ

∂t
, Aψ) + (ψ,A

∂ψ

∂t
) + (ψ,

∂A

∂t
ψ)

=
i

h̄
[(Hψ,Aψ) − (ψ,AHψ)] + (ψ,

∂A

∂t
ψ)

=
i

h̄
(ψ, [H,A]ψ) + (ψ,

∂A

∂t
ψ)

equivalent to the Heisenberg relation given above.

As usual in quantum mechanics, the eigenvalues of Her-

mitian operators that commute with the Hamiltonian are

constants of the motion and can be specified simultane-

ously with the energy eigenvalues. This situation arises

when a system is invariant under some symmetry.
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Must express the transformation properties of states and

operators under a symmetry

In quantum mechanics, an observable is | 〈ϕ|O|ψ〉 |where

O is a Hermitian operator.

For invariance under some symmetry transformation, ob-

servables must be unchanged under that transformation.

For O = 1, the identity operator, the modulus of the

scalar product | 〈ϕ|ψ〉 | is the observable. Under the

symmetry transformation ϕ → T ϕ = ϕ′, we must pre-

serve orthonormality

| 〈ϕ|ψ〉 | = | 〈ϕ′|ψ′〉 |

This implies that the transformations T must be linear

and unitary (U † = U−1) or antilinear and anti-unitary.

Linear U(aϕ+ bψ) = aUϕ+ bUψ

Anti-linear T (aϕ+ bψ) = a∗Tϕ+ b∗Tψ

18



Anti-unitary operator (〈T ϕ|T ψ〉 = 〈ψ|ϕ〉 = 〈ϕ|ψ〉∗)

is anti-linear and norm-preserving.

So typically ϕ→ Uϕ = ϕ′, with U unitary.

The trivial result

| 〈ϕ|O|ψ〉 | = |
〈

ϕ|U †UOU †U |ψ
〉

| ≡ | 〈ϕ′|O′|ψ′〉 |

follows for any operator O . That is, the matrix element

is unchanged under the simultaneous transformation of

the states Uϕ = ϕ′ and the operator O′ = UOU †.

Invariance arguments arise if an operator O represent-

ing an observable is unchanged under

O′ = UOU † = O

That is, [O, U ] = 0.

Consider the caseO = H , the Hamiltonian. ForH ′ = H

the dynamics of the system remain invariant under the

transformation represented by U .
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If |ψ〉 is an eigenstate of H with energy eigenvalue E,

H |ψ〉 = E |ψ〉

then U |ψ〉 is also an eigenstate with the same eigen-

value. For [H,U ] = 0, U is a constant of the motion. If

U is Hermitian it represents a conserved observable. If

U is not Hermitian, there is a Hermitian operator associ-

ated with it that represents the conserved observable.

Some examples

1. Discrete space-time transformation: Parity

The Parity or spatial reflection operator is an example of

an operator whose application twice yields the identity

P2 = 1. P−1 = P† = P is a Hermitian operator with

eigenvalues ±1.

Suppose ψ(~r) is a non-degenerate eigenstate of some

system corresponding to energy eigenvalue E. Suppose

that the system is invariant under the Parity transforma-

tion.
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⇒ Pψ(~r) = ψ(−~r) is also an eigenstate, with the

same eigenvalue E.

Thus ψ(~r) and Pψ(~r) cannot be linearly independent.

⇒ for all ~r

Pψ(~r) = ψ(−~r) =πψ(~r)

where π is a proportionality constant. The above is equally

true for −~r

Pψ(−~r) = ψ(~r) =πψ(−~r)

ApplyingP again to either equation above yields π2 = 1

such that π = ±1.

Thus any nondegenerate eigenstate of a Parity-invariant

system will obey either

Pψ(~r) = +ψ(~r)

or

Pψ(~r) = −ψ(~r)
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The eigenstates are simultaneously eigenfunctions of the

Parity operator and are either even or odd under spatial

reflection.

This means we have selection rules for matrix elements

of operators with well-defined parity.

For instance, electric monopole transitions between states

of different parity are forbidden whereas, for a dipole op-

erator, transitions between states of the same parity are

forbidden.

2. Continuous space-time transformation: Translation

Assume a system is invariant under spatial translation in

one dimension.

Consider that an observer using coordinate system S

with origin O at x = 0 describes the system by

ψ(x) = Ne−x
2/x2

0 .

This is a Gaussian centred at x = 0.
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Consider another observer using coordinate system S ′

with origin O′ displaced along the x-axis to x = a.

That is, x′ = x− a.

We know how the observer using S ′ should describe this

system: as a Gaussian centred at x′ = −a.

ψ′(x′) = Ne−(x′+a)2/x2

0 = ψ(x)

where the relation between x and x′ was used in the

second step.

We can rewrite as

ψ′(x) = Ne−(x+a)2/x2

0 = ψ(x+ a)

This tells us the transformed form of the original func-

tion. We can see how this corresponds to an (unitary)

operator acting on the original form as follows.
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Assume first an infinitesmal translation through ǫ.

ψ′(x) = ψ(x+ ǫ)

∼ ψ(x) + ǫ
∂ψ

∂x

= (1 +
iǫ

h̄
px)ψ(x)

where the quantum mechanical operator px = −ih̄ ∂
∂x

has been identified.

We can formally build up the finite translation by succes-

sive application of infinitesmal translations

ψ′(x) = lim
N→∞

(1 +
a

N

∂

∂x
)Nψ(x)

= ψ(x+ a) =
∞
∑

n=0

an

n!

dn

dxn
ψ(x)

= exp[ia(−i∂/∂x)]ψ(x) = D(a)ψ(x)

= eiapx/h̄ψ(x)

Since px is Hermitian, the displacement operatorD(a) =

eiapx/h̄ expressing the translation is unitary.
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The momentum operator is called the infinitesmal generator

of translations. It is the Hermitian operator representing

the conserved observable (momentum) that corresponds

to the invariance of the system under D, translations.

We can also see how the exponentiated form arises for

the finite translation by recognizing that one translation,

through ǫ, followed by another, through a, is again a

translation, through a + ǫ. Using the form for the in-

finitesmal translation

D(a)D(ǫ) = D(a+ ǫ) = D(a)(1 + iǫ
px
h̄

)

we see the displacement operator satisfies the differen-

tial equation

dD(a)

da
= lim

ǫ→0

D(a+ ǫ) −D(a)

ǫ
= i

px
h̄
D(a)

with the solution D(a) = eiapx/h̄.

This generalizes to a translation in three dimensions as

D(~a) = Dx(ax)Dy(ay)Dz(az) = exp(i~a · ~p/h̄)
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The result ψ′(x) = D(a)ψ(x) links back to our gen-

eral transformation result ϕ′ = Uϕ. We can also look

at the simultaneous transformation of an operator in this

particular case. Focus on the Hamiltonian because we

will impose that it be invariant.

ObserverS writes the time independent Schrodinger equa-

tion

H(x)ϕ(x) = Eϕ(x).

Observer S ′ writes the Schrodinger equation

H ′(x′)ϕ′(x′) = Eϕ′(x′).

These equations are true for all x so we can rewrite the

latter as

H ′(x)ϕ′(x) = Eϕ′(x).

Of course the Hamiltonian’s energy eigenvalue E must

be common to the two observers.
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Operate with the displacement operator on Observer S ’s

equation:

D(a)H(x)(D†(a)D(a))ϕ(x) = ED(a)ϕ(x)

(D(a)H(x)D†(a))ϕ′(x) = Eϕ′(x)

So we can identify H ′(x) = D(a)H(x)D†(a), as

expected. Because this system is assumed to be in-

variant under translation, we have H ′(x) = H(x) im-

plying [H(x), D(a)] = 0 such that [H(x), px] = 0.

Thus eigenfunctions of the Hamiltonian are simultane-

ously momentum eigenstates.

3. Discrete space-time transformation: Particle on a one-

dimensional lattice

Again consider a system invariant under translation in

one-dimension but this time assume a periodic potential

V (x) = V (x + na), where a is now a constant and n

is an integer. Other than the periodicity, we do not spec-

ify the potential so our results arise only because of the
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symmetry. This sort of discrete translational symmetry is

useful in, for instance, metals which generally have ions

arranged in a crystal structure so that electrons see a

periodic potential.

We have the operator representing a general displace-

ment through −a as D(a) = eiap/h̄. Let’s write our

displacement operator here as T (n) = e−inak̂ where

the operator p/h̄ is replaced by the operator k̂.

T (n) |x〉 = |x+ na〉

The label n gives the (discrete) amount of translation and

we will use the label k as the eigenvalue of k̂. Because

the Hamiltonian is assumed invariant under the discrete

translations, the eigenfunctions of the Hamiltonian are

simultaneously eigenfunctions of T (n).

The following properties of the translations allow us to

determine the form of its eigenvalues:
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T (0) = 1

T (−n) = T (n)−1

T †(n)T (n) = 1

T (n)T (m) = T (n+m)

T (n)T (m) = T (m)T (n)

Label the eigenstates and eigenvalues of T (n) as fol-

lows

T (n) |k〉 = λn(k) |k〉

The above properties of T yield:

λ0(k) = 1

λ−n(k) = 1/(λn(k))

|λn(k)|
2 = 1

λn(k)λm(k) = λn+m(k)

λn(k)λm(k) = λm(k)λn(k)

These relations imply that we can write λn(k) = e−inka.
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Denote the simultaneous eigenstates of H and T (n)

such that

H |E, k〉 = E |E, k〉

T (n) |E, k〉 = e−inka |E, k〉

Write the wave function in coordinate space asϕE,k(x) =

〈x|E, k〉 ≡ ϕ(x).

ϕ(x) = 〈x|E, k〉 = 〈x′|T (n)|E, k〉

= e−ik(na)〈x′|E, k〉 = e−ik(na)ϕ(x′)

= e−ik(x
′−x)ϕ(x′)

So the function

u(x) = ϕ(x)e−ikx = ϕ(x′)e−ikx
′

= u(x′) = u(x+ na)

is periodic. Thus ϕ(x) = u(x)eikx, which means the

eigenfunctions can be expressed as the product of a

plane wave and a periodic function. This is Bloch’s theorem.
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