
Abstract Group Theory

A group is a set of elements, G, along with a law of com-

position, denoted by ·, that obeys the following proper-

ties:

1. closure: If a, b ∈ G ⇒ a · b ∈ G. Namely, the

’product’ of any two members of the set is also a

member of the set.

2. associativity: a · (b · c) = (a · b) · c.

3. identity: There exists an element E in G such that

E · a = a · E = a, for all a in G. E, the identity is

unique. It is the group element that ’does nothing’.

4. inverse: For each a in G, there exists b = a−1 in G

such that a · b = b · a = E. Each element has a

unique inverse within the group.

!IMPORTANT! a · b is not necessarily equal to b · a!
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If the set G contains a finite number of elements it is

called a finite group. In this case, the number of elements

is called the order.

We can also have either

• an infinite discrete group, where the number of ele-

ments is denumerably infinite

or

• a continuous group, with the group elements expressed

in terms of continuous parameters.

We will usually be concerned with groups where the ele-

ments represent symmetry transformations. We will usu-

ally refer to the law of composition as multiplication. We

will now drop the notation ·.

Definitions ad nauseum:

If, for all a and b in G, a · b = b · a - that is, all elements

commute - the group G is called Abelian.
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Groups with only one (the identity) or two elements are

clearly Abelian. In fact, a group with 3 elements is also

Abelian and has a unique multiplication table.

Cyclic groups are those for which all elements can be

generated by taking powers of one element. If a is in

G, then powers of a like a2, a3, ... are also in G. If G is

finite, then at some integer power an = E. The smallest

such power is called the order of the element a. Cyclic

groups are Abelian.

Simple examples

1. The group of order two consisting of the real num-

bers 1 and -1 with ordinary multiplication as the law

of composition - ’under ordinary multiplication’. The

multiplication table is

1 -1

1 1 -1

-1 -1 1
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2. The group of order 4 consisting of the numbers 1, -1,

i, −i, under multiplication.

1 -1 i −i

1 1 -1 i −i

-1 -1 1 −i i

i i −i -1 1

−i −i i 1 -1

Clearly these are both Abelian since ordinary multi-

plication is commutative. They are also both cyclic,

with the first group being generated by powers of -1

and the second by powers of i. The smallest set

of elements whose powers and products generate

all the elements of a finite group is called the set of

generators of the finite group.

Notice that the group is reproduced in each row and

each column of these multiplication tables.
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Group Rearrangement Theorem

If a ∈ G and we let b ∈ G run over all elements in

G, then ab also runs over all elements.

Proof: For any c ∈ G, the choice b = ca−1 insures

that c = ba. This is unique since

c = ba = b′a ⇒ baa−1 = b′aa−1 ⇒ b = b′.

Thus all c ∈ G can be formed from ba so the theo-

rem is proved.

3. The discrete infinite group of all real integers is a

group under addition. The identity element is 0. The

inverse of an integer n is −n.

4. Consider the symmetry transformation of inversion,

which changes the direction of a vector. Along with

the identity (do nothing), this constitutes a simple

symmetry group of order two. It clearly has the same

multiplication table, and hence structure, as the first

example.
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5. Consider a rotation in 3-d space through an angle

zero - our identity - along with a rotation R through

π about the z-axis. Again, this forms a cyclic group,

conventionally called C2, that shares the same struc-

ture as examples 1 and 4.

This illustrates the concept of a homomorphism: If there

is a mapping of the elements ga of a group G onto the el-

ements ha of a group H such that the law of composition

is preserved

gagb = gc ⇒ hahb = hc

then H is homomorphic to G. If the mapping is one-to-

one, H is isomorphic to G. This means that two groups

which seemingly have very different physical actions can

be regarded in an abstract sense as the same. This

allows an exploitation of any knowledge of one of the

groups to be applied to the other. Now consider a less

trivial example of this concept.
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Let G be the group of the permutations of 3 objects, de-

noted as S3.

E =







1 2 3

1 2 3





 P1 =







1 2 3

2 1 3







P2 =







1 2 3

1 3 2





 P3 =







1 2 3

3 2 1







P4 =







1 2 3

2 3 1





 P5 =







1 2 3

3 1 2





.

The elements of S3 can be written as cycles:

P1 = (12); P2 = (23); P3 = (13); P4 = (123);

P5 = (132).
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The set of all permutations of n objects forms a group

Sn. A permutation in which the object labelled by i is

replaced by that labelled by pi is denoted as

P =







1 2 ...n

p1 p2 ...pn





.

The numbers p1, ..., pn are just a rearrangement of

1, 2, ..., n. There are n! elements in Sn.

Notice that







1 2 3

i j k





 and







3 1 2

k i j





 describe

the same permutation.

Thus we can write the inverse of P as







p1 p2 ...pn

1 2 ...n





.
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To express successive permutations, write the second

permutation such that its top row is the same as the bot-

tom row of the first permutation (first being on the right).

Consider P1 followed by P5:

P5P1 =







1 2 3

3 1 2













1 2 3

2 1 3







=







2 1 3

1 3 2













1 2 3

2 1 3







=







1 2 3

1 3 2





 = P2

One can work out the multiplication table of S3 readily.

CompareS3 with a group that seems different - the proper

covering group of an equilateral triangle, H = D3.
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Labelling the vertices of an equilateral triangle we can

identify the set of rotations that leaves the form of the

triangle in place but moves the vertices.

R1 (R2), a rotation through 2π/3 (4π/3) about the z-

axis coming out of the triangle

R1

1
∆

2 3 ⇒

3
∆

1 2

R2

1
∆

2 3 ⇒

2
∆

3 1

R3, R4, and R5 are rotations through π about the axes

in the plane of the triangle and bisecting bottom, left and

right sides, respectively.

R3

1
∆

2 3 ⇒

1
∆

3 2

R4

1
∆

2 3 ⇒

2
∆

1 3

R5

1
∆

2 3 ⇒

3
∆

2 1
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Along with E, the identity, this constitutes the group D3.

The multiplication table is

E R1 R2 R3 R4 R5

E E R1 R2 R3 R4 R5

R1 R1 R2 E R4 R5 R3

R2 R2 E R1 R5 R3 R4

R3 R3 R5 R4 E R2 R1

R4 R4 R3 R5 R1 E R2

R5 R5 R4 R3 R2 R1 E

The isomorphism between S3 and D3 is R1 ↔ P5,

R2 ↔ P4, R3 ↔ P1, R4 ↔ P2, R5 ↔ P3.

We will later use permutation symmetry of identical ob-

jects to build up a useful graphical language - Young

Tableaux - that can also be applied to groups isomorphic

to Sn.
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A subgroup is a subset of group elements that satisfies

the group properties under the same law of multiplica-

tion. The identity and the group itself are two subgroups

that every group possesses - the improper subgroups.

All other subgroups are called proper subgroups.

For D3, the set (E,R1, R2), with the rotations about the

z-axis, is an Abelian, cyclic subgroup (C3). The equiv-

alent set (E,P4, P5), with the 3-cycles, is a subgroup

of S3. The three sets (E,R3), (E,R4), and (E,R5)

are each abelian, cylic subgroups (C2) of D3. Similarly

the three sets with the identity and one 2-cyle form sub-

groups of the permutation group S3.

Let S = {s1, s2, . . . , sn} be a proper subgroup of G.

For any element gi in G, the set of elements giS =

{gis1, gis2, . . . , gisn} is called a left coset. Similarly

we define a right coset via right multiplication.

If gi is itself in S, the coset is identical to S, by the defi-

nition of a group.
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If gi is not a member of the subgroup S, then the cosets

contain no members of S. We can prove this as follows.

For gi not in S, assume (gisj) is in S. Now, sj and s−1

j

must both be in S. If (gisj) ∈ S, then (gisj)s
−1

j ∈ S

but this is just gi in contradiction to the assumption that

gi is not in S.

Note that sometimes cosets are defined such that gi is

not in S so that the coset would never contain part of

S. With this definition, a coset is completely different

from the subgroup - they contain no elements in com-

mon. In particular, since S must contain the identity, the

coset cannot. So with this definition, a coset cannot be

a group. The cosets g1S and g2S either coincide or

are completely disjoint. Coincidence occurs if and only if

g−1

1 g2 ∈ S. The set of all the left or right cosets of S

plus S itself contains all the elements of G.
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Now we introduce the concept of classes, which can sim-

plify dealing with large groups. First, we say an element

a ∈ G is conjugate to b ∈ G if there exists an element

u ∈ G such that a = ubu−1. This operation is called

a similarity transformation of b by u. If b and c are con-

jugate to a via a = ubu−1 and a = vcv−1, then b

and c are conjugate to each other via b = u−1au =

u−1vcv−1u = (u−1v)c(u−1v)−1. The set of elements

conjugate to a given element forms a class.

The identity element is a class on its own - the only class

that is a group.

Each element of an Abelian group is in a class of its own

since a = ubu−1 = buu−1 = b.

Each element of a group is a member of only one class.

This follows from the property above of b and c conjugate

to each other when each is conjugate to a. We can split

the elements of a group into sets of elements conjugate

to each other - the conjugacy classes of the group.
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The classes of the group D3 are:

C1 = E

C2 = (R1, R2)

C3 = (R3, R4, R5)

Equivalently, the classes of S3 are:

C1 = E

C2 = (P4, P5)

C3 = (P1, P2, P3)

One can use the multiplication table to obtain these classes.

Since elements of a class are related via a similarity

transformation we have a more intuitive way to proceed.

Rotation through an angle θ about an axis k̂, denoted

as Rk̂(θ) can be related to a rotation through the same

angle about any other axis (with a common origin) by

RRk̂(θ)R
−1 = Rk̂′(θ)
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where R is the rotation that takes the axis k̂ into k̂′,

Rk̂ = k̂′. Consequently, all elements of a group repre-

senting rotations through the same angle belong to the

same class, providing their axes of rotation can be car-

ried into each other via one of elements of the group in a

similarity transformation. In D3, R2 can be considered

as a rotation through 2π/3 about the -z-axis, so it sat-

isfies the criterion that the angle is the same as for R1.

The axes about which the rotations R3,4,5 take place are

carried into each other via R1,2. Thus, for a group of ge-

ometric transformations such as D3, the class structure

can be obtained with an understanding of the nature of

the transformations.

We get the classes of S3 immediately due to its iso-

morphism with D3. However, we also note a particular

structure - each class consists of group elements with

the same cycle structure. The cycles leaving one ele-

ment intact belong in a class together, as do those where
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all three elements are permuted. In general Sn has as

many classes as it has cyclic structures.

Extend this idea of conjugation: consider a subgroup H

of G. Then the elements h′ = ghg−1, for all h ∈ H

with g ∈ G, form another group H′ that is isomorphic

to H. H′ is called a conjugate subgroup to H. If, for

all g ∈ G, we have H′ = H = gHg−1, then H

is called an invariant subgroup. An invariant subgroup

goes into itself on conjugation with any other element of

G. An invariant subgroup consists of complete classes

of the larger group. Note that we can also write this as

gH = Hg - an invariant subgroup is one for which the

left and right cosets are the same with respect to all the

elements of G. Invariant subgroups are also called nor-

mal subgroups, self-conjugate subgroups, or normal di-

visors.

A group with no nontrivial invariant subgroups is called

simple.
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Groups without Abelian invariant subgroups (apart from

E) are called semi-simple. Semi-simple groups are often

made by putting together simple groups.

The center of a group G, denoted by Z is the set of ele-

ments that commute with all g. It is an Abelian invariant

subgroup.

For a group G with an invariant subgroup H, we can

construct a new group called the factor or quotient group

G/H. The elements of G/H are H and its distinct

cosets.

As an example, the group S3 has the set (E,P4, P5)

as an invariant subgroup. It consists of the complete

classes C1 and C2. The permutations P4 and P5 are

so-called even permutations, consisting of an even num-

ber of transpositions (in this case, two). This invariant

subgroup is the Alternating group of permutations A3.

The other subgroups of S3 are not invariant since they

do not contain complete classes. Thus we can form the
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factor group S3/A3 consisting of two elements, namely

A3 itself and its coset which is the set of the remain-

ing elements B ≡ (P1, P2, P3), the odd permutations

(single transposition). The factor group satisfies the fol-

lowing multiplication rules: A3 · A3 = A3; A3 · B =

B = B · A3; and B · B = A3. These are the well

known results that a product of two even permutations

is even, an odd permutation followed by (or following)

an even permutation is odd, and the product of two odd

permutations is even. The factor group S3/A3 is homo-

morphic to the group S2 (also C2): the elements of A3

map onto the identity E while the elements of B map

onto the transposition of two objects P = (12).

A group G is a direct product of two groups H and H′ if

all elements of H commute with all elements of H′ and if

every member of G can be written uniquely as a product

of elements from H and H′. That is g = hh′. Only the
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identity is common to H and H′. We write this as

G = H×H′.

The order of the direct product group is the product of

the orders of the two groups. If two elements of G, say

ab′ and cd′ (where a, c ∈ H and c′, d′ ∈ H′), are in

the same class, there must be an element ef ′ of G such

that

(ef ′)(ab′)(ef ′)−1 = (cd′).

Because the elements of the two groups commute,

(eae−1)(f ′b′f ′−1) = cd′

so a and c are in the same class of H while b′ and d′ are

in the same class of H′. Consequently there is a class

of G = H × H′ for every pair of classes from the two

groups.

If one can recognize a group G as actually being a direct

product of two other groups, then it can be understood by

dealing more simply with each of the groups separately.
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