PHYS 2604 Assignment #5

Given: Thursday, October 22, 2009

Due: Tuesday, November 3, 2009 in class

- 1. Calculate the temperature of a blackbody if the spectral distribution peaks at
 - a) gamma rays, $\lambda = 1.00 \times 10^{-14} \, m$?
 - b) red light, $\lambda = 670 \, nm$?
 - c) AM radio waves, $\lambda = 204 m$?
- 2. A particular radiating cavity has the maximum of its spectral distribution at a wavelength of 27.0 μm (in the infrared region of the spectrum). The temperature is then changed such that the total power radiated by the cavity doubles.
 - a) Compute the new temperature.
 - b) At what wavelength does the new spectral distribution have its maximum value?
- 3. This is a relativistic Doppler shift problem. One of the strongest emission lines observed from distant galaxies comes from hydrogen and has a wavelength of $\lambda = 122 \ nm$, in the ultraviolet region of the electromagnetic spectrum. (1 $nm = 1 \times 10^{-9} m$)
 - a) How fast must a galaxy be moving away from us in order for that line to be observed in the visible regions at a wavelength of 366 *nm*?
 - b) What would be the wavelength of the same line if the galaxy were moving toward us at the same speed?
- 4. How many photons per second are contained in a beam of electromagnetic radiation of total power 125 *W* if the source is
 - a) an AM radio station of frequency 1100 kHz?
 - b) x rays of wavelength 8.0 nm?
 - c) gamma rays of energy 4.0 MeV?

O	V	er	٠.				•																		•	
---	---	----	----	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--

5. A surface is irradiated with monochromatic light of variable wavelength. Above a wavelength of $\lambda = 5000 \, \dot{A}$, no photoelectrons are emitted from the surface. With an unknown wavelength, a stopping potential of 3 V is necessary to eliminate the photoelectric current. What is the unknown wavelength?