PHYS 2604 Assignment #4

Given: Tuesday, October 13, 2009

Due: Tuesday, October 20, 2009 in class

- 1. An electron is accelerated from rest through a potential difference of $2 \times 10^6 V$. In this problem use the energy units that make most sense, multiples of eV. Calculate the momentum of the electron in two different ways, as described below.
 - a) First find the electron energy. Then find the momentum directly using the energy.
 - b) Now, instead, find the γ factor for the electron first. Then find $\beta = u/c$, where u is the electron's speed, and use these directly to get its momentum.
 - c) What would be the energy of a photon if it were to have the momentum equal to what you calculated for the electron? Explain how you get your result.
- 2. A four vector $A = (A^0, A^1, A^2, A^3)$ is defined as an object that transforms under a Lorentz boost (in the x direction) as

$$A^{0'} = \gamma \left(A^0 - \frac{v}{c} A^1 \right)$$

$$A^{1'} = \gamma \left(A^1 - \frac{v}{c} A^0 \right)$$

$$A^{2'} = A^2$$

$$A^{3'} = A^3.$$

Show that the scalar product of two four vectors is invariant. Namely, show that $A' \cdot B' = A \cdot B$, where $A \cdot B \equiv A^0 B^0 - A^1 B^1 - A^2 B^2 - A^3 B^3$.

3. Show that the speed of a particle whose total energy is E is

$$u = c \left[1 - \left(\frac{mc^2}{E} \right)^2 \right]^{1/2}.$$

Show that the speed of a particle whose momentum is p is

$$u = \frac{pc}{(p^2 + m^2c^2)^{1/2}}.$$

4. An object disintegrates into two fragments. One of the fragments has mass $1.00 \, MeV/c^2$ and momentum $1.75 \, MeV/c$ in the positive x direction. The other fragment has mass $1.50 \, MeV/c^2$ and momentum $2.005 \, MeV/c$ in the positive y direction. Find (a) the mass and (b) the speed of the original object.