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10 Physics Questions to Ponder for a Millenium or Two

One of those questions:

How can we understand quark and gluon
confinement in Quantum Chromodynamics ?

Meson Spectroscopy is the ideal laboratory
to accomplish this



Mesons are composed of a quark-antiquark pair

Combine u,d,s,c,b quark and
antiquark to form various mesons:
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Meson quantum numbers characterized by given JP¢
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Quark-antiquark Potential

For given spin and orbital angular momentum configurations
& radial excitations generate our known spectrum of light quark mesons
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Spin-dependent potentials:
Spin-spin interactions:
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The Charmonium Spectrum

VOLUME 45, NUMBER 14 PHYSICAL REVIEW LETTERS 6 OCTOBER 1980

Observation of an i, Candidate State with Mass 2978 + 9 MeV
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What about mesons with light quarks?
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Essential features are the same, except:
‘Relative importance of relativistic effects
‘Hyperfine splittings are comparable in size to

orbital splittings

Conclude
‘potential models approximately valid
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Generally, good
agreement for
confirmed states
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*Many unconfirmed states:
f,(1530), h,(1380)

‘Many puzzles:
N(1440),f,(1420), £,(1500) f,(1710), £;(2200)
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*At this point there were many models that
predicted new forms of hadronic matter:
*Multiquark states (Baryonium)
*Glueballs
‘Hybrids

*Also, Lattice QCD; numerical calculations of
hadron properties starting from first principles
in their infancy
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Nathan developed flux tube model based on
the strong coupling Hamiltonian lattice QCD

*Based on quark and flux-tube degrees of freedom
‘Provides a unified framework of:
conventional hadrons, multiquark states,
hybrids and glueballs

PHYSICAL REVIEW D VOLUME 31, NUMBER 11 1 JUNE 1985

‘Flux-tube model for hadrons in QCD

Nathan Isgur
Department of Physics, University of Toronto, Toronto, Canada M5S 147

Jack Paton v .
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, England OX1 3NP
(Received 30 August 1984)

We extract from the strong-coupling Hamiltonian lattice formulation of QCD a model for had-
rons based on the use of quark and flux-tube degrees of freedom. The ordinary quark model of
mesons and baryons is recovered as an appropriate limit, but the properties of hybrids, pure glue,
and multiquark hadrons are also predicted by the model. The basic tenets of the model can be tested
by lattice Monte Carlo simulations.
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Glueballs
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Fig. 1. The adiabatic potentials of the tlux tube model and of
the two body potential for two aqd@ arrangements: (a) and 13



, Two types of hybrids:
Hybrids -Vibrational hybrids
-Topological hybrids

--------------------------------

Quarks move in effective potentials

of adiabatically varying state of flux tubes
*A given adiabatic surface corresponds

to various string topologies and excitations
‘Lowest excited adiabatic surface
corresponds to transverse excitations

--------------------------------

transverse phonon modes Hybrid mesons Lowest mass hYbr‘I ds

A at 1.9 GeV

- 1 GeV mass difference (1/r) Doubly degener'a'l'el
J'PC - O+- O-+ 1+- 1-+
2+- 2-+ 1++ 1--

A 4 Normal mesons
ground state
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Gluonic Excitations of Mesons: Why They Are Missing and Where to Find Them

Nathan Isgur and Richard Kokoski
Department of Physics, University of Toronto, Toronto, Oniario M5S 147, Canada

and

Jack Paton
Department of Theoretical Physics, University of Oxford, Oxford OX1 3NP, England
(Received 28 November 1984)

We have studied the decays of the low-lying gluonic excitations of mesons (hybrids) predicted by
a flux-tube model for chromodynamics. The probable reason for the absence to date of signals for
such states is immediately explained: The lowest-lying hybrids decay preferentially to final states
with one excited meson [e.g., B(1235)m, 4,(1320)m, K*(1420)K, = (1300)=, . . . ] rather than to
two ground-state mesons (e.g., 7@, pw, K*K,. . .). We make specific predictions of decay chan-
nels which will contain JP€ exotic hybrid resonance signals and suggest some possibly fruitful pro-
duction mechanisms.

TABLE 1. The dominant decays of the low-lying exotic meson hybrids.

Hybrid state® JrG (Decay mode) of decay Partial width (MeV)

X2+_ (1900) 2+ (ﬂAz)p 450
(mAD)p 100
(mH)p 150

{ yi* = (1900) 2+~ (wB)p 500 }

z3* = (2100) 2+- [KK*(1420) +c.c.]p 250

(KQ;+C.C.)p 200
{ xi~* (1900) 1-- (7B)sp 100,30 }

(1TD)5,D 30,20

y1_+ (]900) 1=+ (FA])&D 100,70
[ (1300)15 100
(KQy+c.c)s ~ 100

zi * (2100) (KQl+C-C-)D 80
(’_<Q2+C.C.)s 250
[KK(1400) +c.c.]p 30

x¢t = (1900) o+t (mAy)p 800
(‘H'H)p 100
{77 (1300) ] 900

{ yét = (1900) 0+- (wB)p 250 }

2¢"~ (2100) 0+~ (KQi+cc.)p 800
(KQ;+cc)p 50
[KK(1400) +c.c.ls 800

3x, », and zdenote the flavor states (1/v/2) (uti — dd), (1/\/2) (u + dd), and s5. The subscript on a
state is J, the superscripts are Pand C,,.
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"Discovering experimental evidence for gluonic degrees
of freedom in hadron spectroscopy is, in our estimation,
the most important outstanding qualitative test for QCD."

Predict that “diffractive photoproduction can produce
plucked p, w,and ¢@states so could be a good source for
all four of the desirable exotics .."

17



Where are we now?

Lattice calculations have matured and supports the
flux tube picture:
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Nucl. Phys. (Proc. Suppl.) 63A-C, 326 (1998)
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SU(3) Glueball Spectrum

C.Morningstar and M.Peardon
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Where's the Glue?

An Exotic Signal in Brookhaven E852
TP—o>T TR P Atl8GeVie
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What about the future?

CITATIONS

G_I.U X ST Hall D at Jefferson Lab
PERIMENT

"Searching for Exotic Gluonic Excitations”

www.gluex.org
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How do we see flux tubes in spectroscopy?

Quantum-mechanically a photon sometimes behaves like
a quark-antiquark pair with spins aligned

First excited state of flux tube has J=1

when combined with S=1 for quarks generate:

JP¢ = 0+ 0 1+ 1+ 2 2
NN

exotic

Like a vibrating string
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Photoproduction:

Production of exotic
hybrids favored.
Almost no data available

Optimum photon energy
is about 9 GeV

Proposal to upgrade CEBAF to 12 GeV
Produce photons through coherent bremsstrahlung
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Hall D will
be located
here

Linac

The JLab Accelerator Complex

Construction start — 2004 Physics - 2008
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20 Cryomodules

Add Cryomodules

Construction start - 2004
Physics - 2008
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Conclusion

In the last decade there has been much theoretical progress

especially in lattice QCD.

o Need comparable experimental results, especially on gluonic
excitations, to understand the nature of confinement in QCD.

@ Recent data provides hints of these excitations - but a detailed
map of the hybrid spectrum is essential.

Photoproduction promises to be rich in hybrids - starting with those
possessing exotic quantum numbers and little or no data exist.

The energy-upgraded JLab will provide photon beams along with a
® state-of-the-art detector to map out the hybrid spectrum

mmp Tf exotic hybrids are there - we will find them. <
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