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Preface

Although quantum chromodynamics (QCD) is generally regarded as the
theory that describes strong interaction physics we are as yet unable
to make precise predictions for hadron properties. The reason for this
is that QCD is a strongly interacting field theory and the techniques
used in QED have limited applicability to QCD. In the soft QCD region
relevant to hadron physics the situation is particularly difficult.

Unfortunately, high energy physicists have all but deserted the sub-
ject since they believe that since we know the Lagrangian all the rest
is details. However there are a number of important reasons to study
hadron physics. The first has already been stated; we still haven’t
solved QCD in the soft regime and we still don’t understand hadrons
from first principles. Until we do we cannot say that we understand
QCD. The second reason is that there is a growing belief that the weak
interactions become strong at the scale of electroweak symmetry break-
ing. If this turns out to be the case, low energy hadron dynamics will
provide an important laboratory to study strong interactions which may
have direct relevance to understanding electroweak symmetry breaking.
The third reason is that knowledge of hadronic matrix elements is cru-
cial for extracting electroweak parameters from experiment. Semilep-
tonic B-decays and B0 − B̄0 mixing are two examples. Finally, hadron
physics is interesting in its own right with many interesting problems
to understand. For example, at at present we don’t even know what
the correct degrees of freedom are for low energy hadron physics.

At Carleton a course is given to incoming particle physics graduate
students on high energy physics phenomenology. It is split up into four
parts of which I have given the section on hadron physics. Because
I could not find any textbook that covered the subject in a way that
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I was happy with I produced a set of notes which were the basis for
this book. The material in this book is typically covered in 3 weeks of
lectures consisting of 3 hour per week.

The course concentrates on the spectroscopy of hadrons. In other
words the mass predictions of mesons and baryons and their transitions.
As I said QCD has yet to be solved in this regime so we will turn to
a model that has been very successful; the constituent quark model.
When we are finished you will have the knowledge to calculate hadron
properties which is turning out to be important to many topics in high
energy physics such as extracting CKM matrix elements from B meson
decay and studying CP violation at B factories.



Chapter 1

Introduction

In this book we will study the properties of hadrons, that is the prop-
erties of strongly interacting particles such as π’s K’s, ρ’s, n, p, Λ, . . ..
We now know that hadrons are made of quarks and antiquarks and
the strong force is mediated by the exchange of gluons. The theory of
quarks and gluons is Quantum Chromodynamics, a non-Abelian gauge
theory. Strong interaction physics is much richer than hadron spec-
troscopy. It includes perturbative QCD and structure functions which
are relevant to high energy processes, with high momentum transfer
(Q2). High Q2 QCD is often referred to as hard QCD. The hadron
physics I will restrict myself to is at low Q2 which is sometimes referred
to as soft QCD.

We find that the constituent quark model successfully describes
much of hadron spectroscopy and as such is a useful tool for describ-
ing the properties of hadrons. However, one should not confuse the
quark model with QCD. QCD is believed to give a much richer phys-
ical spectrum of states than that predicted by the quark model and
includes objects called glueballs, hermaphrodites, and multiquark states.
At present there is no irrefutable evidence for such exotics and it has
yet to be shown from first principles that QCD does in fact predict
them. The search for these new forms of hadronic matter has become
a major preoccupation of hadron spectroscopists.

I plan on beginning with a bit of a historical introduction to hadron
spectroscopy. That will also act as an overview of the subject. Next I
will give some theoretical background to strong interaction physics and
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Figure 1.1: A high Q2 process.

some theoretical motivation to the quark model along with some other
qualitative properties of hadrons.

Next we will look at the spectroscopy of heavy quarkonia including
the spectroscopy, electromagnetic transitions and decays. The reasons
that I begin with heavy quarkonia is that the basic premise of the quark
model is on firmer foundation for the heavy quarkonia and the approach
is taken over directly to light quark hadrons.

The next step is to extrapolate to light mesons where the non-
relativistic approach is questionable, although even there it works bet-
ter than it has any right to.

I start with the mesons since they are simplist to deal with than
baryons so we will next turn to baryons but do not study them in
the same detail as we studied mesons. Finally, in the last section, for
completeness, I want to discuss quark model exotics; hybrids, glueballs,
and multiquark states.

1.1 Historical Introduction

A good place to begin our brief history of hadron spectroscopy is 1947.
At that time it appeared as if strong interaction physics was under-
stood. The nucleus was made up of protons and neutrons and Yukawa’s
meson the π, was the mediater of the strong force which held together
the nucleus.
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The situation changed in December when Rochester and Butler dis-
coverd a neutral particle which decayed into a π+ and a π− in a cosmic
ray experiment. Since it looked like an upside down V in the cloud
chamber photographs it was called the V 01 It had at least twice the
mass of the pion. In 1949 Powell discovered the charged kaon in

K+ → π+ + π+ + π− (1.1)

which was originally called the τ+. Because the kaon behavedin some
respects like heavy pions they were included in the meson family.

Meanwhile, in 1950, another V particle was found by Anderson’s
group at Cal-Tech decaying to p + π−. Since it decays to pπ− it is a
baryon and has mass greater than mp. It is called the Λ. Over the
next few years many more baryons were discovered, the Σ’s, Ξ’s, and
the ∆’s.

Some of these new particles had unexpected properties so they were
referred to as strange paricles. They are produced copiously and there-
fore strongly but decayed relatively slowly and therefore weakly. This
suggested that the production mechanism is different from their decay
mechanism. They are produced by the strong force but decay by the
weak force. Pais suggested that the strange particles are produced in
pairs. Gell-Man and Nishijima assigned a new property, strangeness,
which is conserved in any strong interaction but is not conserved in
weak interactions. For example

π−p → K+Σ−

→ K0Σ0

→ K0Λ

S = +1 − 1 (1.2)

and π and p have S = 0. You could never produce just one strange
particle

π−p 6→ π+Σ−. (1.3)

On the other hand when these particles decay, strangeness is not con-
served

Λ → pπ−

1It was later known as the θ0 and is now known as the K0.
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Figure 1.2: The Baryon Octet

Σ+ → pπ0

→ nπ+. (1.4)

By 1960 there was a whole zoo or hadrons. They were divided into
two general families; the baryons and the mesons.

1.2 The Eightfold Way

Gell-Man introduced the so called Eightfold way in 1961 as a way of
arranging the baryons and mesons into geometrical patterns according
to their charge and strangeness. The eight lightest baryons fit into
the array: The eight lightest mesons formed a similar pattern, the
(pseudo-scalar) meson octet. In addition there is the baryon decuplet:
It was the prediction of the Q = −1, S = −3, Ω− baryon and its
subsequent discovery with the predicted properties that indicated that
the Eightfold way was correct. Over the next ten years every new
hadron found a place in one of the Eightfold way supermultiplets.

For the mesons, the antiparticles lie in the same supermultiplet as
the corresponding particles. The Eightfold way classification of hadrons



1.2. THE EIGHTFOLD WAY 5

Figure 1.3: The pseudo-scalar Meson Octet

Figure 1.4: The Baryon decuplet
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Figure 1.5:

was the first step in understanding hadrons.

1.3 The Quark Model

So why do hadrons fit into the Eightfold way multiplets? In 1964 Gell-
Man and Zweig independently proposed that all hadrons are composed
of more elementary constituents, which Gell-Man called quarks (and
Zweig called aces).

Gell-Mann viewed quarks as nothing more than mathematical de-
vices while Zweig believed them to be real particles. For Zweig the
origin of the quark model lay in the properties of the φ meson. In
particular, the dominant decay mode was φ→ KK̄. In principle the φ
should also decay to ππ and one would expect the ππ mode to domi-
nate since theKK̄ mode was just below threshold. In strong interaction
physics one would expect anything that can occur to occur with max-
imum strength. So why was the ππ mode suppressed? History would
repeat itself with the discovery of the J/ψ.

To understand this Zweig turned to the Sakata model with con-
stituents Λ, n, p so that

φ ∼ ΛΛ̄ (1.5)

and

ω ∼ (pp̄+ nn̄)/
√

2. (1.6)

He interpreted meson decays as the separation of its constituents: Since
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Figure 1.6: ω → K+K−

the φ was made of Λ and Λ̄, constituents not in the ρ or π the decay
φ→ ρπ could not occur.

Pursuing this, if one considers triplets of quarks

3× 3× 3 (1.7)

one obtains the 8 and 10 representations of the eightfold way observed
in nature.

One main results was that quarks had fractional charge. The cou-
pling of hadrons to one another is determined by how the constituents
could move from one hadron to another with the appropriate creation
of pairs. For example, Zweig also looked at the possible quantum num-
bers that you can get from qq̄ bound states. All his work is essentially
our present picture of hadron spectroscopy!

The quarks come in three types (or flavours) The up (u) quark
carries a charge of 2/3 and strangeness zero, the (d) down quark a
charge of −1/3 and S=0, and the strange (s) quark charge −1/3 and
S=-1. To each quark (q) there corresponds an antiquark (q̄) with the
opposite charge and strangeness.

The quark model asserts that

1. Every baryon is composed of 3 quarks (and every antibaryon is
composed of 3 antiquarks).

2. Every meson is composed of a quark and an antiquark.
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Figure 1.7: The fundamental quark triplet

Figure 1.8: The fundamental quark triplet

Table 1.1: The Baryron Decuplet

qqq Q S Baryon
uuu 2 0 ∆++

uud 1 0 ∆+

udd 0 0 ∆0

ddd -1 0 ∆−

uus 1 -1 Σ∗+

uds 0 -1 Σ∗0

dds -1 -1 Σ∗−

uss 0 -2 Ξ∗0

dss -1 -2 Ξ∗−

sss -2 -3 Ω−
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Table 1.2: The Meson Nonet. The π0, η, and η′ are linear combinations
of uū, dd̄ and ss̄.

uū 0 0 π0

ud̄ +1 0 π+

dū -1 0 π−

dd̄ 0 0 η
us̄ 1 1 K+

ds̄ 0 1 K0

sū -1 -1 K−

sd̄ 0 -1 K̄0

ss̄ 0 0 η′

1.4 Problems with the quark model

A problem with the quark model is that isolated quarks have never
been seen. This led to widespread skepticism about the quark model
and the existence of quarks. Supporters of the quark model introduced
the notion of quark confinement in which; for reasons not understood,
quarks are absolutely confined within baryons and mesons. This doesn’t
explain anything, it merely pushes the problem aside. However, the
solution of the problem now appears to have been solved.

There was also a theoretical objection to the quark model. It ap-
pears to violate the Pauli exclusion principle that no two identical
fermions can occupy the same state. For the case of the ∆++, for
example, the spin 3/2 ∆++ is composed of three identical u quarks;

|∆++〉 = |uuu〉| ↑↑↑〉 (1.8)

Since the ∆++ is a member of the supposed ground state baryon de-
cuplet one would expect its wave function to be in a symmetric state.
One way out was to suppose that the ground state wavefunction was not
symmetric. However no reasonable wavefunction could be constructed.
To get out of this dilema Greenberg proposed that the quarks had an
additional quantum number called colour so that in addition to flavour
quarks came in 3 colours. Therefore to properly anti-symmetrize the
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∆++ wavefunction the quarks would be an antisymmetric colour state
and symmetric in spin, flavour, and spatial wavefunction. The anti-
symmetric colour wavefunction of a baryon is given by

1√
6
εijkuiujuk =

1√
6
[u1u2u3−u1u3u2+u2u3u1−u2u1u3+u3u1u2−u3u2u1]

(1.9)
and the total hadron wavefunction is given by

ψ = space× spin× flavour × colour (1.10)

This hypothesis seemed so ad hoc that many physicists did not take
it very seriously and it was considered to be another problem of the
quark model. Eventually it turned into the basis of QCD, the theory
of the strong interactions. With the introduction of colour the idea
of confinement was restated as only colourless objects occur in nature.
This rule explains why particles can’t be made of 2 quarks or 4 quarks
and the only colourless hadrons are qq̄, qqq, or maybe qqq̄q̄. The meson
colour wavefunction is

1√
3

=
1√
3
(q1q̄1 + q2q̄2 + q3q̄3) (1.11)

1.5 The November Revolution (1974)

Although some physicists continued to work on the quark model and
made progress, because of its ad-hoc assumptions it was not taken
seriously by the physics community at large.

Then in 1974, a narrow hadron resonance was discovered indepen-
dently by Ting at Brookhaven in pp̄→ µ+µ− and by Richter at SLAC
in e+e− → hadrons. Ting called it the J and Richter the ψ. It is
known as the J/ψ. The J/ψ is an electrically neutral, extremely heavy
meson with an exceedingly long lifetime τ ∼ 10−20 sec. This should
be compared to typical hadron lifetimes of the order of 10−23 sec so
it is roughly 1000 times larger than comparable hadrons. This long
lifetime indicated something fundamentally new and precipitated what
is referred to as the November revolution.

The universally accepted interpretation is that the J/ψ is a bound
state of a new found quark, the charm quark, and its antiquark so
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Figure 1.9: The charmonium spectrum.

that |J/ψ〉 = |cc̄〉. (The idea of a fourth quark and its name was first
introduced by Bjorken and Glashow in 1964.)

This interpretation had many implications including many new baryons
and mesons. The charm quark is assigned a new quantum number +1
anc c̄ with C=-1. In the J/ψ charm was hidden so to confirm this
hypothesis it was important to produce a particle with naked (or bare)
charm. The first charmed baryons Λ+

c = udc and Σ++
c = ucs appeared

in 1975, the first charmed mesons D0 = cū and D+ = cd̄ in 1976, and
the charm-strange meson Ds = cs̄ in 1977.

Shortly thereafter another state, the ψ′, was discovered at SLAC
with mass 3685 GeV/c2 and was interpreted as the first radial excitation
of the J/ψ. The quark model predicted a rich spectroscopy of additional
states, the ηc and χc0, χc1, χc2, and hc. The cc̄ energy levels are shown
in fig??

In 1977 a new heavy mesons, the upsilon, was discovered and was
understood to be the bound state of a fifth quark; the b for bottom or
beauty so Υ = bb̄. The first beautiful baryon, Λ = udb was discovered
in 1981 and the first beautiful mesons B0 = bd̄ and B− = bū were found
in 1983. The bottomonium spectrum is shown in fig. ??
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Figure 1.10: The bottomonium spectrum.

1.6 Quantum Chromodynamics

Part and parcel of this description of the heavy quarkonium system was
the treatment of colour in the context of a gauge theory where a colour
triplet of quarks interacts via a colour octet of massless gauge bosons
called gluons in analogy to QED. A property of QCD is that quarks
are confined respecting the ad-hoc ansatz of the quark model.

Calculational QCD has proven to be extremely difficult to solve in
the soft, low Q2 (large r) region. The problem is that the coupling
constant of QCD, αs, gets large for large separation and perturbation
theory so useful in QED is no longer applicable. One approach to
solving QCD is to evaluate the theory on a discrete space time lattice
— Lattice QCD. However, it is likely to be some time before the thing
will be considered to be solved. In the meantime the constituent quark
model, with embelishments motivated to QCD, has proven to be an
extremely useful and successful tool for study of hadron properties.
Such potential models were pursued by Appelquist and Politzer.

Although colour was originally introduced in a rather ad hoc manner
there is other evidence for 3 colours.

The first comes from e+e− annihilation into hadrons described by
Comparing this to e+e− → µ+µ− and assuming that quarks hadronize
in some manner independent of their production with unit probability
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Figure 1.11: e+e− → hadrons

the ration of these cross sections is

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
=

∑
i=
colours
flavours

Q2
i (1.12)

where Qi are the charges of all quarks which can be produced at a given
energy.

High statistics data exists for centre of mass energies sufficient to
produce u, d, s pairs but not heavier quarks or τ+τ− pairs. We expect
R in this energy range to be

R = N{(2
3
)2 + (

1

3
)2 + (

1

3
)2} =

2

3
N (1.13)

where N is the number of colours. The data clearly favours N = 3. All
e+e− data at higher energies are consistent with N = 3 once heavier
quarks and τ+τ− pairs are taken into account.

The second piece of evidenc comes from the decay of the neutral
pion. A grossly simplified discussion follows.

The process π0 → 2γ may be thought of as proceeding by means of
an internal quark loop. The divergence of the axial-vector current A(3)

µ

carrying the π0 quantum numbers is dominated by the π0 pole. One
obtains (using perturbation theory)

Γ(π0 → γγ) =
S2m2

π

8πf 2
π

(
α

2π
)2 (1.14)
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Figure 1.12: e+e− → hadrons

Figure 1.13: π → γγ
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where fπ ' 130 MeV and S = N{Q2
u − Q2

d} = N/3. For N = 1 this
predicts Γ(π0 → γγ) ' 8/9 eV while for N = 3 this predicts Γ(π0 →
γγ) ' 8 eV. The experimental value is Γ(π0 → γγ) ' 7.95 ± 0.55 eV
which favours N=3.

1.7 Spectroscopy Rules: Putting Quarks

Together

To combine quarks and antiquarks to form qq̄ mesons and qqq baryons
start by coupling the quarks’ spins together to obtain the total spin S
and then couple to the orbital angular momentum, L, to obtain the total
angular momentum J . Since quark spin and L need not be separately
conserved quantum numbers, this prescription can sometimes lead to
ambiguities.

1.7.1 Mesons

Let us begin with the qq̄ system. The relative parity of q and q̄ is neg-
ative. (Since P is represented in terms of Dirac matrices bye β = γ0.)
The parity of a spatial wavefunction with orbital angular momentum
L is (−1)L. Hence,

P (qq̄, L) = (−1)L+1. (1.15)

A neutral qq̄ system is also an eigenstate of the charge conjugation
operator C with eigenvalues

C(qq̄, L, S) = (−1)L+S (1.16)

It is useful to label all composite qiq̄j by this value of JPC even when
i 6= j. The composites formed in this way are summarized

The spectroscopic notation denotes 2S+1LJ with S for L=0, P for
L=1, D for L=2, and F, G, H, for L=3,4,5 etc. The restrictions of P
and C restrict which states may mix with each other. P forbids mixing
of even and odd values of L. The series JP = 0+, 1−, 2+, 3− ... is known
as the natural parity states while the series JP = 0−, 1+, 2−, 3+ ... is
called unnatural.
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Table 1.3: qq̄ composites for L ≤ 2

L S JPC Notation
0 0 0−+ 1S0

1 1−− 3S1

1 0 1+− 1P1

1 0++ 3P0

1++ 3P1

2++ 3P3

2 0 2−+ 1D2

1 1−− 3D1

2−− 3D2

3−− 3D3

Some combinations of JPC cannot be made out of qq̄. The state
0−− is forbidden as is the whole sequence 0++, 1−+, 2++ ... These are
sometimes called “exotics of the second kind” and are a good signature
for non-quark model states and more complicated configurations like
hybrid (qq̄ + g) states, qqq̄q̄ multiquark states, and glueballs which
have no constituent quark content at all.

The non-neutral qq̄ composites fall into two classes with respect
to mixing. Nonstrange with Q=0 ud̄, dū, are related to neutral ones
1√
2
(uū − dd̄) by isospin. Hence the selection rules appropriate to the

neutral member are also appropriate to the charged one. We can define
something called G-parity for the neutral member

G = C(−1)I (1.17)

All members of an isospin multiplet have the same G parity. Since
G(π) = − the G-parity counts the number of pions into which the state
decays. If a state decays to both an even and an odd number of pions
(as the J/ψ does) at least one class of decays must be violating isospin
and therefore proceeds with essentially electromagnetic strength.

Strange, charmed, etc qq̄ states are not C-eigenstates and only
flavour symmetry presents the mixing of states with opposite C la-
bels in Table 1. Thus the strange 1P1 and 3P1,

1D2 and 3D2,
1F3 and
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Table 1.4: Baryon quantum numbers and naming notation.

L S JP Notation Other Possible States
0 1/2 1/2+ 2S1/2

4D1/2

3/2 3/2+ 4S3/2
2D1/2,

4D3/2

1 1/2 1/2− 2P1/2
4P1/2

3/2− 2P3/2
4P3/2,

4F3/2

3/2 1/2− 4P1/2
2P1/2

3/2− 4P3/2
2P3/2,

4F3/2

5/2− 4P5/2
2F5/2,

4F5/2

2 1/2 3/2+ 2D3/2
4S3/2,

4D3/2

5/2+ 2D5/2
4G5/2,

4G5/2

3/2 1/2+ 4D1/2
2D1/2

3/2+ 4D3/2
4S3/2,

2D3/2

5/2+ 4D5/2
2D5/2,

4G5/2

7/2+ 4D7/2
2G7/2

3F3 states may mix with one another when the symmetry is broken.

1.7.2 Baryons

All quarks have +ve parity so for baryons we have

P = (−1)L (1.18)

For three spin 1/2 quarks possible total spins are S=1/2 and S=3/2.
Combining orbital angular momentum and spin we obtain;

Because there are now three quarks with two angular momenta,
three quark spins, and three quark flavours, there are a considerable
number of possible baryon wavefunctions with many possible mixings.
However, when two quarks in the baryon are identical or in the same
isospin multiplet many restrictions follow. Nevertheless, the increasing
number of possibilities makes the baryon wavefunctions considerably
more complicated than the meson wavefunctions.
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1.8 Naming Scheme for Hadrons

The Particle Data Group (PDG) has recently introduced a new hadron
naming scheme to reduce the proliferation of mesons and to convey
unambiguously the important quantum numbers of the particles they
name. The quark model was used as a guide for the naming scheme
without limiting it.

1.8.1 Neutral Flavour Mesons: S=C==B=T=0

Start with quantum numbers compatable with the quark model. Recall
the spectroscopy notation of qq̄ states:

2S+1LJ

P = (−1)L+1

C = (−1)L+S

2S+1LJ
1(Leven)J

1(Lodd)J
3(Leven)J

3(Lodd)J

PC −+ +− −− ++
JPC 0−+ 1+− 1−− 0++

2−+ 3+− 2−− 1++

...
...

...
...

ud̄, uū− dd̄, dū (I = 1) π b ρ a
uū+ dd̄, ss̄ (I = 0) η, η′ h, h′ ω, φ f, f ′

cc̄ ηc hc ψ χc

bb̄ ηb hb Υ χb

tt̄ ηt ht θ χt

The entries in the table give the particle symbol. The spin J is
added to the symbol as a subscript except for pseudoscalars and vector
mesons. The mass is added in parenthesis fo any meson that decays
strongly. Therefore the properties may be inferred unambiguously from
the symbol. If the mass symbol cannot be assigned because the quan-
tum numbers are unknown X is used. Sometimes it is not known
whether a meson is mainly the isospin 0 mixture of uū+ dd̄ or mainly
ss̄.



1.8. NAMING SCHEME FOR HADRONS 19

Gluonium states or other mesons that are not qq̄ states are to be
named just as qq̄ states are named if the quantum numbers are not
exotic. These states will likely be difficult to distinguish from qq̄ states
and will likely mix with them. An exotic meson with quantum numbers
that a qq̄ system cannot have;

JPC = 0−+, 0++, 1−+, 2+−, 3−+ (1.19)

will use the same symbol as would an ordinary meson that has all the
same quantum numbers as the exotic meson except for C-parity. Then
a hat is added to the symbol;

I = 1 0−− would be π̂

I = 0 1−+ would be ω̂

The results are:

I = 1 I = 0 (ns) ss̄ cc̄ bb̄
1S0 π η η′ ηc ηb
3S1 ρ ω φ J/ψ Υ
1P1 b1 h1 h′1 hc1 hb1
3P0 a0 f0 f ′0 χc0 χb0
3P1 a1 f1 f ′1 χc1 χb1
3P2 a2 f2 f ′2 χc2 χb2
1D2 π2 η2 η′2 ηc2 ηb2
3D1 ρ1 ω1 φ′1 χc0 χb0
3D2 ρ2 ω2 φ′2 χc1 χb1
3D3 ρ3 ω3 φ′3 χc2 χb2

1.8.2 Charged Mesons

For Mesons with nonzero S, C, and T none of the states are eigenstates
of charge conjugation and in each, one of the quarks must be heavier
than the other. The rules are:

1. The main symbol is an upper case Roman letter indicating the
heavier quark as follows

s→ K̄ c→ D b→ B̄ t→ T (1.20)
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This convention gives that the flavour carried by a charged meson
has the same sign as its charge. Therefore K+, D+, B+ have +ve
strangeness, charm, and bottom.

2. If the other quark is not a u or d quark its identity is given by a
subscript.

3. If the spin-parity is in the normal JP =)+, 1−, 2+ . . . a superscript
is added.

4. The spin is added as a subscript except if the meson is a pseu-
doscalar or a vector.

Applying these rules results in the following meson names:

qs̄ cq̄ qb̄ sb̄
1S0 K D B Bs
3S1 K∗ D∗ B∗ B∗

s
1P1 K1 D1 B1 Bs1
3P0 K∗

0 D∗
0 B∗

0 B∗
s0

3P1 K1 D1 B1 Bs1
3P2 K∗

2 D∗
2 B∗

2 B∗
s2

1.8.3 Baryons

1. Baryons with three u and/or d quarks are named:

N ’s I = 1/2

∆’s I = 3/20 (1.21)

2. Baryons with 2 u and/or d quarks are:

Λ’s I = 0

Σ’s I = 10 (1.22)

If the 3rd quark is a heavy quark (not s) its identity is given by
a subscript; Λc(2285), Σc(2455), Λb(5500).

3. Baryons with one u or d quark are Ξ’s with I = 1/2. One or
2 subscripts are used if one or both of the remaining quarks are
heavy; Ξc, Ξcc, Ξb.
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4. Baryons with no u or d quarks are Ω’s with I = 0. The subscripts
indicate the heavy quark content.
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Chapter 2

Theoretical Background to
Soft QCD

The property that distinguishes quarks from leptons is colour so it is
natural to attempt to construct a theory of the strong interactions
among quarks based on a colour gauge symmetry. The resulting theory
is called quantum chromodynamics or QCD.

If QCD is the correct theory of the strong interactions it must de-
scribe an enormous range of phenomena, from the spectroscopy of light
hadrons to deep inelastic scattering and jet formation at high energy
colliders.

In this section I will look at the low Q2 region of QCD sometimes
referred to as soft QCD. I will look at

• Motivation for colour and SU(3).

• The QCD Lagrangian.

• The strong coupling constant evolution.

• Qualitative pictures of soft QCD.

• Lattice QCD.

• The heavy quarkonium potential.

23
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2.1 A Colour Gauge Theory

There is varied evidence that quarks are colour triplets. They are

• Resolution of the spin-statistics problem.

• Magnitude of the cross section for electron-positron annhilation
into hadrons.

• The π0 lifetime.

• It explains the branching ration for τ -decays.

• It is required for anomaly cancellation in the standard model

Attempts were made to formulate a dynamical theory based on colour
symmetry. How did we arrive at SU(3)? Since quarks appear to be in
colour triplets but hadrons are colour singlets possibilities are SO(3),
SU(3), and U(3).

In SO(3) there is not distinction between colour and anticolour
so there will be no distinction between quarks and antiquarks. The
existence of qq̄ mesons implies the existence of qq diquark states which
would be fractionally charged. However fractionally charged diquarks
are not observed so SO(3) is not an appropriate choice.

In U(3) colour you get a colour singlet gauge boson that occurs in
3⊗ 3 = 1⊕ 8. It would mediate long range strong interactions between
colour singlet hadrons and is therefore ruled out.

Therefore we are left with SU(3).
The Lagrangian for SU(3) colour is given by

L = iψ̄(iγµDµ −m)ψ − 1

2
tr(GµνG

µν) (2.1)

where the composite spinor for the colour triplet quarks is

ψ =
qred

qblue

qgreen

)(2.2)

and the covariant derivative is

Dµ = ∂µ + igBµ (2.3)
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Figure 2.1: The Quark-Gluon Vertex

where Bµ is a 3×3 matrix in colour space formed from the eight colour
gauge fields biµ and the generators λi/2 of SU(3).

Bµ =
1

2
~λ ·~bµ =

1

2
λlblµ (2.4)

The gluon field strength term is

Gµν =
1

2
~Gµν · ~λ = 1

2
Gl

µνλ
l

= (ig)−1[Dν , Dµ]

= ∂νBµ − ∂µBν + ig[Bν , Bµ] (2.5)

and
Gl

µν = ∂νb
l
µ − ∂µb

l
ν + gf iklbjµb

k
ν (2.6)

where f jkl are the anti-symmetric structure functions of SU(3). Know-
ing the QCD Lagrangian we can study the interactions between quarks.

The quark-gluon interaction term in the QCD Lagrangian is given
by

Lint = −g
2
baµψ̄γ

µλaψ (2.7)

leading to the quark-gluon vertex given in fig.
So a quark with colour index α = R, B, G turns into a quark

with colour index β and a gluon with Lorentz index µ and colour label
a = 1, 2, . . . 8. The one-gluon exchage force between quarks shown in
fig. ? is proportional to

∼ g2

4

∑
a

λa
αβλ

a
γδ. (2.8)

To save writing define ~T = 1/2~λ. In SU(N) it is equivilant to average
the square of any single generator over the representation or to perform
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Figure 2.2: The Quark-Gluon Vertex

Table 2.1: Value of some colour Casimir operators in some representa-
tions.
representation 〈~T 2 〉

1 0
3 or 3∗ 4/3
6 or 6∗ 10/3

the sum over all generations. The former is simpler and it is particularly
convenient to choose I3, the 3rd component of isospin in the flavour
analogy.

The expectation value in a representation of dimension d is

〈~T 2〉d = (N2 − 1)
∑

representation

I2
3/d (2.9)

where N2 − 1 is the number of generators of SU(N). To evaluate
〈T (1) · T (2) use the relation

〈T (1) · T (2)〉 =
1

2
[〈T 2〉 − 〈T (1)2〉 − 〈T (2)2〉] (2.10)

We can use this expression to evaluate the colour expectation value for
various quark configurations. Some examples are given in the table ??

For qq̄ system the one-gluon-exchange is attractive for the colour
single but repulsive for the colour octet. Similary, for diquark systems,
the colour triple is attractive but the sextet is repulsive.

For 3 (or more) body systems we assume that the interaction is the
sum of 2-body forces so that

∑
i<j

〈T (i) · T (j)〉 =
1

2
[〈T 2〉 −

∑
i

〈T (i)2〉]. (2.11)
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Table 2.2: The interaction energies for a few quark systems.
configuration 〈∑i<j T

(1) · T (2)〉
〈qq̄〉1 -4/3 (attractive)
〈qq̄〉8 1/6 (repulsive)
〈qq̄〉3̄ -2/3 (attractive)
〈qq〉6 1/3 (repulsive)
〈qqq〉1 -2 (attractive)

These simple observations do not show the richness of QCD and the
difficulty in solving it. We have neglected multigluon exchange and the
trilinear gluon coupling.

2.2 Charge Renormalization in QED

2.3 The Running Coupling Constant in

QCD

2.4 Qualitative Models of QCD

2.5 Lattice QCD
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Chapter 3

The Spectroscopy of Heavy
Quarkonia

3.1 The Spin-Independent Potential

In the previous chapter I gave qualitative arguments why the spin-
independent potential is a linear plus Coulomb potential

V (r) = −4

3

αs(r)

r
+ br (3.1)

with b ' 0.18 GeV2. We also saw how this potential is consistent with
results from lattice QCD. However, historically this form was arrived
at through trial and error (although Appelquist and Politzer got i right
in a early paper ∼ 1975!). Emperically, the Schrodinger equation was
solved for a given potential which was modified until agreement was
achieved between theory and experiment.

We have
M = m1 +m2 + Enl (3.2)

where [
p2

2µ
+ V (r)

]
ψ = Enlψ and

(
µ =

m1m2

m1 +m2

)
(3.3)

This gives [
− h̄

2µ
∇2 + V (r)

]
ψ = Enlψ (3.4)

29
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with

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
(3.5)

Separating variables

ψ(r, θ, φ) = R(r)Ylm(θφ) (3.6)

results in

1

r2

d

dr

(
r2dR

dr

)
=

[
l(l + 1)

r2
+

2m

h̄2 V (r)− E

]
R (3.7)

substituting U(r) = rR(r)

− h̄
2

2µ

d2U

dr2
+

[
V (r) +

h̄2

2m

l(l + 1)

r2

]
U = EU (3.8)

with boundary conditions U(0) = 0 and U ′(0) = R(0). To see the phe-
nomenological motivation for the linear plus Coulomb potential con-
sider the harmonic oscillator and Coulomb energy levels and then we
see that the cc̄ lies somewhere between the two. Therefore the linear
plus Coulomb potential is a reasonable interpolation between the two.
We could see this in another way by starting with the energy levels and
wavefunctions of either and then treating the other as a perturbation.
In the following figure we show the cc̄ and bb̄ spectra. Phenomenologi-
cally we find

∆(ψ(3685)− ψ(3097)) ' ∆(Υ(10023)−Υ(9460)) (3.9)

Two potentials which reproduce these splittings are:{
V (r) = λrν r ' 0.1
V (r) = c ln(r/r0) c = 0.73

(3.10)

We could also fit these splittings with the linear plus Coulomb potential
for suitable values of αs and b. We could also use the postion of the
P-wave states as a criteria for a suitable potential. The spin-averaged
3PJ states gives

M̄ = (5M(3P2) + 3M(3P1) +M(3P0)/9 (3.11)
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Figure 3.1: Comparison of the energy levels of the Harmonic oscillator
and Coulomb potentials to the cc̄ spectrum.

Figure 3.2: The charmonium and bottomonium spectra

For cc̄ M̄ = 3522 MeV

M(2S)−M(1P )

M(2S)−M(1S)
=


1/2 H.O. (ν = 2)
1/4 forν = 0
0 Coulomb (ν = −1)

(3.12)

This gives from cc̄ ν ' 0.15.

3.2 Spin Dependent Potentials

In general one would expect spin-dependent interactions:

~S1 · ~S2
~L · ~S S12 (3.13)
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where S12 is the tensor interaction. Let us start by examining the
spin-dependent interactions of QED in the hydrogen atom.

3.2.1 The Spin-Orbit Interaction

For the hydrogen atom, from the point of view of the electron the
proton circles around. This orbital motion crates a magnetic field at
the centre given by

B =
ev

cr2
(3.14)

or in terms of the electron orbital angular momentum L = mvr

~B =
e

mcr3
~L (3.15)

The spinning electron constitutes a tiny magnetic dipole with dipole
moment

~µ = − e

mc
~S (3.16)

The energy of a magnetic dipole in the presence of a magnetic field ~B
is

W = −~µ · ~B (3.17)

If we derive this more rigorously as a succession of infitesimal Lorentz
transformations we obtain the Thomas precession, which introduces a
factor of 1/2:

∆HSO =
e2

2m2c2r3
~L · ~S (3.18)

The expectation value of ~L · ~S is given by

~L · ~S =
1

2
[J2 − L2 − S2] =

1

2
[j(j + 1)− l(l + 1)− s(s+ 1)] (3.19)

which gives, for example,

3P2
~L · ~S = 1

3P1
~L · ~S = −1

3P0
~L · ~S = −2 (3.20)
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Figure 3.3: The spin orbit splitting for P-wave mesons

3.2.2 The Hyperfine Interaction

Again in hydrogen, the proton has a dipole moment

~µp = γp
e

mpc
~Sp (3.21)

where γp is the proton diple moment in units of nucleon magnetons
(γp = 2.7928).

The proton spin acts directly with the electron spin. The magnetic
dipole, µp, has a field

~B(~r) =
1

r3

[
3(~µ · ~r)~r

r2
− ~µ

]
︸ ︷︷ ︸

r>a

+
8π

3
~µδ3(~r)︸ ︷︷ ︸
r<a

(3.22)

We can represent the two pieces pictorially by The energy of the electron
in the presence of the dipole is

∆HSS =
γpe

2

mmpc2

{
1

r3
[3(~Sp · r̂)(~Se · r̂)− ~Sp · ~Se] +

8π

3
(~Sp · ~Se)δ

3(~r)
}

(3.23)
This gives rise to the hyperfine structure of hydrogen, in particular the
21cm line in hydrogen. The expectation value of the ~S1 · ~S2 is given by

~S1 · ~S2 =
1

2
[S2 − S2

1 − S2
2 ] =

1

2
[s(s+ 1)− 3

2
(3.24)
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Figure 3.4: The hyperfine interaction

Figure 3.5: The hyperfine splitting for S-wave states
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3.2.3 The Spin-Dependent Potentials in Quarko-
nia

One can take the above results over to the one-gluon interactions in
QCD.

Hhyp
ij =

−αs(r)

mimj

8π

3
~Si · ~Sjδ

3(rij) +
1

r3
ij

3~Si · ~rij
~Sj · ~rij

r3
ij

− ~Si · ~Sj

(3.25)

H
S.O.(c.m.)
ij =

−αs(r)

r3
ij

(
1

mi

+
1

mj

) ~Si

mi

+
~Sj

mj

 · ~L ~Fi · ~Fj (3.26)

H
S.O.(t.p.)
ij = − 1

2rij

∂V (r)

∂rij

 ~Si

m2
i

+
~Sj

m2
j

 · ~L (3.27)

For mesons 〈~Fi · ~Fj〉 = −4/3.

3.2.4 A simplified look at spin-dependent splittings
in charmonium

Let us examine the spin-dependent splittings in the cc̄ system. Using
harmonic oscillator wavefunctions simplifies the calculations. We use
harmonic oscillator wavefunctions with the oscillator parameters fitted
to the r.m.s. radii of wavefunctions which were found by solving the
Schrodinger equation for a linear plus Coulomb potential. This approx-
imation gives reasonably good results.

ψ1S =
2

π1/4
β3/2e−β2r2/2Y00 (3.28)

where 〈r2〉1S = 3
2

1
β2 = 2.5 GeV−2 so β1S = 0.77 GeV.

ψ2S =

√
8

3

β3/2

π1/4
(
3

2
− β2r2)e−β2r2/2Y00 (3.29)

where 〈r2〉2S = 7
2

1
β2 = 11.0 GeV−2 so β2S = 0.564 GeV.

ψ1P =

√
8

3

β5/2r

π1/4
e−β2r2/2Y1m (3.30)
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where 〈r2〉1S = 5
2

1
β2 ' 7.0 GeV−2 so β1P = 0.598 GeV, 〈1/r〉1P =

4
3

β
π1/2 = 0.45 GeV, and 〈1/r3〉1P = 4

3
β3

π1/2 = 0.16 GeV. With these
wavefunctions we can calculate the spin-dependent splittings in the S-
waves and P-wave charmonium mesons.

Hyperfine Effects

For the S-waves the Hyperfine effects are given by

Hhyp
ij =

32π

9

αs(r)

m2
c

~S1 · ~S2δ
3(rij) (3.31)

From above we have ~S1 · ~S2 = 1
2
[s(s+ 1)− 3

2
] which gives

⇒ 〈3S1|~S1 · ~S2|3S1〉 = +1/4

〈1S0|~S1 · ~S2|1S0〉 = −3/4
(3.32)

Substituting into Hij gives

M(3S1)−M(1S0) =
32π

9

αs

m2
〈δ3(rij)〉

=
32π

9

αs

m2
|ψ(0)|2

=
32π

9

αs

m2

β3

π3/2

= 0.115 GeV (3.33)

where we took β = 0.77 GeV, αs = 0.32, and mc = 1.6 GeV. The
experimental value is 115 MeV. Repeating the excercise for the 2S
states we obtain M(23S1) − M(21S0) = 67 MeV. We can obtain a
crude estimate of the Υ− ηb splitting if we assume the wavefunction at
the origin is the same in both cases:

M(Υ)−M(ηb) '
(
m2

c

m2
b

)
× (M(J/ψ)−M(ηc)) (3.34)

Using mb ' 5 GeV we obtainM(Υ)−M(ηb) ' 11 MeV.
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Fine Structure

We can write the 3PJ masses as

M = M(1P ) +a〈~L · ~S〉 +b〈S12〉
M(3P2) = M(1P ) +a −2

5
b = 3556

M(3P1) = M(1P ) −a +2b = 3511
M(3P2) = M(1P ) −2a −4b = 3415

(3.35)

where a and b are given by evaluating the HSO for the harmonic oscil-
lator wavefunctions. For example, given

H
S.O.(CM)
ij =

4

3

αs

r3

2

m2
c

~S · ~L (3.36)

and

H
S.O.(TP )
ij = − 1

2r

∂V

∂r

1

m2
c

~S · ~L (3.37)

with

V = −4

3

αs

r
+ br (3.38)

we need the expectation values

〈 1

r3
〉 =

4

3

β3

π1/2
(3.39)

and

〈1
r
〉 =

4

3

β

π1/2
(3.40)

We therefore obtain from the one gluon exchange piece

a =
3

2m2
c

4

3

αs

r3
= 40 MeV (3.41)

and

b =
1

4m2
c

4

3

αs

r3
= 7 MeV (3.42)

and from the confining piece a contribution to a of -16 MeV. This
results in the masses M(3P2) = 3556 MeV, M(3P1) = 3505 MeV, and
M(3P0) = 3424 MeV in reasonable agreement with the experimental
numbers.
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Figure 3.6: Electromagnetic transitions in mesons.

3.3 Radiative Transitions

It’s one thing to be able to predict the masses of the various hadronic
states but we would also like to probe the internal structure of these
states. We can do so by studying their decays which will be sensitive to
the internal structure. By far the theoretically cleanest decays are elec-
tromagnetic transitions. The electromagnetic interaction is well known
and we are confident that perturbation theory works. The physics of
radiative transitions is exactly the same as the physics of radiative
transitions in atomic or nuclear physics.

An electromagetic transition is described by the single quark tran-
sitions;

3.3.1 Phase Space

Before we study the transition matrix element lets first look at the two
body phase space relevant to a radiative transition, Mi →Mfγ:

dΓ =
(2π)4δ4(pf + pγ − pi)

2Mi

|Mfi|2
d3pf

(2π)3(2Ef )

d3pγ

(2π)3(2Eγ)
(3.43)

integrating we obtain:

Γ =
1

8Mi

1

(2π)2

∫
|Mif |2δ(Ef + Eγ − Ei)δ

3(~Pf − ~pγ)
d3pf√
~p2

f +m2
f

d3pγ√
~pγ

(3.44)
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=
1

8Mi

1

(2π)2

∫
|Mif |2δ(Ef + Eγ −Mi)

d3pf

pf

√
p2

f +m2
f

(3.45)

=
1

8πMi

∫
|Mif |2δ(Mi −

√
p2 +m2

f − p)
p2dp

p
√
p2 +m2

f

(3.46)

where I used the notation that ~p2
f = p2

f = p2. Next I use the substitu-
tions

E =
√
~p2

f +m2
f +

√
~p2

f

dE =
pdp√
p2

f +m2
f

+
pdp

p

=

(
p+

√
p2 +m2

p
√
p2 +m2

)
pdp (3.47)

so that

dE =
E√

p2 +m2
dp⇒ dp√

p2 +m2
=
dE

E
(3.48)

so that

Γ =
1

8πMi

∫ ∞

m2
|Mif |2δ(Mi − E)

p

E
dE

=
1

8πM2
i

|Mif |2p (3.49)

where

p =
1

2M

√
M4

i +M4
f − 2M2

i M
2
f =

M2
i −M2

f

2Mi

(3.50)

This can rearranged further to obtain

Γ =
|Mif |2

8πMi

(1−M2
f /M

2
i ) (3.51)

and
dΓ

d cos θ
=

|Mif |2

16π2Mi

(1−M2
f /M

2
i ) =

|Mif |2

8π2M2
i

ω (3.52)

where ω = kγ(= pγ).
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3.3.2 E1 Transitions

Lets start with E1 transitions for which we can resort to nonrelativistic
quantum mechanics. Using minimal substitution

p2

2m
→ (~p− e ~A)2

2m
=

p2

2m
− e~p · ~A

2m
− e ~A · ~p

2m
+ e2

~A2

2m
(3.53)

where A is the electromagnetic field and p2/2m is the kinetic energy

term in the Schrodinger equation. Since the e2 ~A2 is higher order in e
and therefore smaller we drop it. We are interested in the interaction
term

HI = − e

2m
( ~A · ~p+ ~p · ~A) (3.54)

The photon wavefunction is given by

~A(x) =
1√
2ω
~ε(~k)ei~k·~x (3.55)

where ~ε is the photon polarization vector. We can expand the expo-
nential

ei~k·~x ' 1 + i~k · ~x+ . . . (3.56)

in the long wavelength limit we have 1/k >> r where r is the size of
the hadron. Therefore we can approximate the photon wavefunction
with

~A(x) ' 1√
2ω
~ε(~k) (3.57)

Substituting into HI gives

HI = − e

2m
(~ε · ~p+ ~p · ~ε) (3.58)

The next step is to evaluate the expectation value of this operator. We
start by using the commutation relations

[pi, rj] = −iδij (3.59)

which gives

[~p2, rj] = pi[pi, rj] + [pi, rj]pi = −2ipj (3.60)



3.3. RADIATIVE TRANSITIONS 41

or

pj =
i

2
[p2, rj] (3.61)

Substituting

〈A|pi|B〉 = i〈A|[~p2/2, rj]|b〉
= iµ〈A|[H, rj]|B〉
= iµ〈A|Hrj − rjH|B〉
= iµ(EA − EB)〈A|rj|B〉

= i
m

2
ω〈A|rj|B〉 (3.62)

Where the reduced mass, µ = m/2 and ω = EA − EB. We used the
fact that for H = p2/2µ + V (r) [V (r), r] = 0. We can subsitute this
result into the expectation value for HI to obtain

〈A|HI |B〉 = −iemω
2m

〈A|ri|B〉εi

= −ieω
2
〈A|ri|B〉εi

= −ieω
2
〈A|~r|B〉 · ~ε (3.63)

Given the matrix element and the phase space factors there are two
approaches to evaluating the matrix elements;

Method 1

We start by summing over the photon polarizations and obtain the
sum: ∑

pol

~εi(k)~ε
∗(k) = δij − kikj/~k

2 (3.64)

so that∑
pol

|〈B|HI |A〉|2 = ω2e2Q2
{
|〈B|~r|A〉|2 − |〈B|~r · k̂|A〉|2

}
(3.65)

Averaging over directions gives the final result

= ω2e2Q2 2

3
|〈B|~r|A〉|2 (3.66)
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Let us start with the transition 3PJ →3 S1γ to start with. The
orbital angular momentum is zero in the final state. We can choose
any value of JZ since we averaged over the photon directions. It is
convenient to choose JZ = J . Before proceeding we need to write down
the form for the meson wavefunction;

|M〉 =
√

2Mψ(r) (3.67)

where the factor of
√

2M is introduced so that the wavefunctions are
normalized to one when integrating over the relativisitic phase space
integral. For the 3P2 state with JZ = 2 we have

|J = JZ = 2〉 = |L = LZ = 1〉 ⊗ |S = SZ = 1〉
= |Y11 ↑↑〉 (3.68)

Only the J ′Z = S ′Z = 1 contributes since HI does not flip the spin.
Putting this together and evaluating the matrix element we obtain

〈f |~r|i〉 = 〈f |r|i〉
∫
〈Y00 ↑↑ |

√
4π

3
Y1−1|Y11 ↑↑〉dΩ

= 〈f |r|i〉
√

1

3
(3.69)

(3.70)

where

〈f |r|i〉 =
∫
r2drRf (r)rRi(r)

√
2Mi

√
2Mf (3.71)

Therefore

Γ(3P2 →3 S1) =
1

8πM2
|Mif |2ω

=
ω

8πM2
ω2e2Q2|〈f |r|i〉|2(sMi)(2Mf )×

2

3
× 1

3

=
4παω3e2q

8π

8

9
|〈f |r|i〉|2

(
MiMf

MiMi

)
=

4

9
αω3e2q|〈f |r|i〉|2

(
Mf

Mi

)
(3.72)
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We repeat the excercise for 3P1 →3 S1

|J = JZ = 1〉 =
1√
2
|Y11

1√
2
(↑↓ + ↓↑)− Y10 ↑↑〉 (3.73)

so that

〈L′ = 0|~r|J = JZ = 1〉 =
1√
2
〈L′ = 0|~r|L = LZ = 1〉 − 1√

2
〈L′ = 0|~r|L = LZ = 0〉

=

[
1√
2
〈L′ = 0| 1√

3
(− x̂+ iŷ√

2
)|L = LZ = 1〉 − 1√

2
〈L′ = 0| 1√

3
ẑ|L = LZ = 0〉

]
〈1S|r|1P 〉(3.74)

so that

|〈3S1|~r|3P1〉|2 = [
1

2

1

3
+

1

2

1

3
]|〈1S|r|1P 〉|2 (3.75)

Similarly for 3P0 →3 S1

|J = JZ = 0〉 =

√
1

3
|Y11 ↓↓ −Y10

√
1

2
(↑↓ + ↓↑) + Y1−1 ↑↑〉 (3.76)

resulting in

|〈3S1|~r|3P0〉|2 = [
1

3

1

3
+

1

3

1

3
+

1

3

1

3
]|〈1S|r|1P 〉|2 (3.77)

Summarizing all these results we obtain

Γ(3P2 →3 S1γ) =
ω3e2Q2

3π

1

3
|〈1S|r|1P 〉|2 (3.78)

Γ(3P1 →3 S1γ) =
ω3e2Q2

3π

{
1

2

1

3
+

1

2

1

3

}
1

3
|〈1S|r|1P 〉|2 (3.79)

Γ(3P0 →3 S1γ) =
ω3e2Q2

3π

{
1

3

1

3
+

1

3

1

3
+

1

3

1

3

}
|〈1S|r|1P 〉|2(3.80)

Comparing these expressions we see that in all cases

Γ(3PJ →3 S1γ) =
4αω3Q2

9
|〈1S|r|1P 〉|2 (3.81)

Similarly we obtain:

Γ(3S1 →3 PJγ) =
4αω3Q2(2J + 1)

27
|〈1S|r|1P 〉|2 (3.82)
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Let us return to our “effective” wavefunctions for the charmonium
states:

ψ1S =
2

π1/4
β3/2e−β2r2/2Y00 β = 0.77 GeV (3.83)

ψ1P =

√
8

3

β5/2r

π1/4
e−β2r2/2Y1m β = 0.598 GeV (3.84)

This gives

〈ψ1S|r|ψ1P 〉 =
2

π1/4

√
8

3

1

π1/4
β

3/2
S β

5/2
P

∫
r4e−(β2

S+β2
P )r2/2dr

=

√
8

3
15

β
3/2
S β

5/2
P

(β2
S + β2

P )5/2

= 5.2 GeV−1 (3.85)

Plugging this in we obtain

Γ(3P2 →3 S1γ) = 0.59 MeV vs Γexpt = 0.351+.2
−.14 MeV(3.86)

Γ(3P1 →3 S1γ) = MeV vs Γexpt < 0.355 MeV (3.87)

Method 2

Another technique which is useful uses helicity amplitudes.

3.3.3 M1 Transitions and Magnetic Moments

Because quarks have spin they can omit a photon via a spin flip, the
magnetic moment transition.

To obtain the interaction Hamiltonian we perform a non-relativistic
reduction of the

HI = e
∫
dxjµ

em(x)Aµ(x) (3.88)

where jµ
em(x) = q̄(x)Qγµq(x) is the electromagnetic current. We ex-

pand the Dirac spinors to lowest order in p/m. Denoting the large and
small components by q1 and q2

q2(x) = −i~σ ·
~∇

2m
q1(x) (3.89)
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so that

~jem(x) =
−i
2m

[q†1Q(∇q1)− (∇q†1)Qq1 + i∇× q†1Q~σq1] (3.90)

and the interaction Hamiltonian is given by:

HI =
−eQ
2m

[ ~A(~r) · ~p+ ~p · ~A(~r) + ~σ · [~∇× ~A(~r)] (3.91)

so

〈0|HI |γ(~k, ε)〉 = − 1

(2π)3/2

1

(2ω)1/2
eQ

1

2m
[ei~k·~r~ε·~p+~ε·~pei~k·~r+i~σ·(~k×~ε)ei~k·~r]

(3.92)
For antiquarks change the sign of the charge. We have already examined
the first two terms in our discussion of the E1 transitions. The last term
gives rise to the spin-flip M1 transitions.

µ =
e

2mq

(3.93)

is the magnetic dipole moment of the quark. Therefore for the magnetic
dipole transistions we have

Mif = iµ〈f |~σ|i〉 · ~k × ~ε∗ (3.94)

where the photon polarization vector is given by

~ε =
1√
2
(1,±i, 0) (3.95)

Thus, ∣∣∣∣∣∣∣
σx σy σz

kx ky kz

1 i 0

∣∣∣∣∣∣∣ = iσz(kx + iky)− ikzσx + kzσy (3.96)

So ~σ · (~k × ~ε±) = ∓ ikz√
2
(σx ± iσy) ± iσz√

2
(kx ± iky). Choosing z as the γ

directions, and assuming one helicity state, we obtain

Mif = − ieq

2m
kγ〈f |σx − iσy|i〉 (3.97)
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where σx − iσy = σ−. If instead we took y as the photon direction we
would obtain

Mif =
ieq

2m
kγ〈f |σz|i〉 (3.98)

= kγ

√
2Mi

√
2Mf

∫
d3rψ∗f (r)ψi(r)× 〈f |

∑
µiσzi|i〉 (3.99)

Once again we can return to our simplified charmonium system and
look at the M1 transition J/ψ → ηcγ which is a 3S1 →1 S0γ transition.
The amplitude for this decay is given by

A(3S1 →1 S0γ) = −ikγ

√
2Mi

√
2Mf〈f |i〉

×〈
√

1

2
(↑↓ − ↓↑)| eq

2mq

(σx − iσy)q√
2

+ µq̄
(σx − iσy)q̄√

2
| ↑↑〉(3.100)

= −ikγ

√
2Mi

√
2Mf〈f |i〉

[
−eq

2mq

+
eq̄

2mq̄

]
(3.101)

= −ikγ

√
2Mi

√
2Mf〈f |i〉

eeq

mc

(3.102)

Squaring and including the phase space factors gives the differential
width:

dΓ

dΩ
= kγ

4πα

8π2
k2

γ|〈f |i〉|2
e2c
m2

c

(3.103)

and averaging over angles gives the total width

Γ =
k3

γ

3π
|〈f |i〉|2 e

2
c

m2
c

(3.104)

We take 〈f |i〉 = 1 which is reasonable in first order perturbation theory.
kγ = 115 MeV which gives us the result Γ = 0.19 MeV vs the exper-
imental number of 0.88 keV. This is not too good agreement. What
about the transition ψ′ → ηcγ which is 23S1 → 11S0. In this case we
would expect the spatial overlap integral to be equal to zero since the
1S and 2S wavefunctions are orthogonal. Nevertheless the transition
is observed. There are a number of reasons for this. In second order
perturbation theory the hyperfine interaction which split the singlet
and triplet states would also change the wavefunctions so that the 13S1
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Figure 3.7: Leptonic decays of vector mesons.

and 11S0 are no longer identical and the 23S1 wavefunction is not nec-
essarily orthogonal to the 11S0 wavefunction. In addition we used the
long wavelength approximation. This is not a bad approximation but
when the states we are considering are orthogonal the next term in
the expansion will give a small but nonzero contribution to the overlap
integral.

3.4 Leptonic Decays

We can also examine other decays in the quark model such as J/ψ →
e+e− (3S1 → e+e−) which is shown if Fig. ??. The hadronic part of the
matrix element for this decay is given by

〈0|jµ
em|V (↑↑)〉 =

√
3× 2M

∫
d3pφs(p)Y00〈0|jµ

em|cc̄〉 (3.105)

where the factor of
√

3 comes form colour:

∑
colour

=

√
1

3
(rr̄ + bb̄+ gḡ) =

3√
3

=
√

3 (3.106)

If we go through the entire calculation we obtain in the end the
expression

Γ =
16πα2e2q
M2

|ψ(0)|2 (3.107)
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Figure 3.8: Annihilation decays of quarkonium to photons and gluons.

The wavefunction at the origin reflects that the quark and antiquark
must annihilate which is proportional to the probability that they will
be at zero separation.

3.5 Other Decays

We can study many other decays of quarkonium which are of the form
of annihilations to photons and gluons. The results can be taken over
from positronium annihilation except when gluons are involved we must
be careful to include the correct colour factors.

For the case of gluons, at least two must be produced as a single
gluon has colour which would violate colour confinement. Two gluons
can combine to give a colour singlet. Only C = + states can decay to
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two gluons or photons. C = − states must decay to an odd number of
gluons and photons to conserve C-parity. For example, a 3S1 state can
decay to three gluons, two gluons plus a photon, or three photons.

Problems

1. I have solved the Schrodinger equation for the bb̄ system with the
linear plus Coulomb potential and have approximated the exact
wavefunctions with these approximations:

ψ1S =
2

π1/4
β3/2e−β2r2/2 Y00

ψ2S =

√
8

3

β3/2

π1/4

(
3

2
− β2r2

)
e−β2r2/2 Y00

ψ3S =

√
32

15

β3/2

π1/4

(
15

8
− 5

2
β2r2 +

1

2
β4r4

)
e−β2r2/2 Y00

ψ1P =

√
8

3

β5/2r

π1/4
e−β2r2/2 Y1m

ψ2P =

√
16

15

β5/2r

π1/4

(
5

2
− β2r2

)
e−β2r2/2 Y1m

β1S = 1.2 GeV, β2S = 0.83 GeV, β3S = 0.72 GeV, β1P = 0.89
GeV, and β2P = 0.73 GeV. In what follows take mb = 5.0 GeV,
αs = 0.4, and b = 0.18 GeV2.

The following integrals might be useful:

∫ ∞

0
x2ne−px2

dx =
(2n− 1)!!

2(2p)n

√
π

p
and

∫ ∞

0
x2n+1e−px2

dx =
n!

2pn+1

where (2n+ 1)!! = 1.3...(2n+ 1).



50CHAPTER 3. THE SPECTROSCOPY OF HEAVY QUARKONIA

(a) Calculate the hyperfine splitting for the 1S, 2S, and 3S bb̄
states (using 1st order perturbation theory).

(b) Calculate the expectation values of 〈~L · ~S〉 for the P-wave
mesons. Using these results and 〈3P2|S12|3P2〉 = − 1

10
, 〈3P1|S12|3P1〉 =

1
2
, and 〈3P0|S12|3P0〉 = −1 calculate the spin dependent

splittings in the 1P and 2P multiplets. Compare your re-
sults with the experimental splittings.

2. Let us continue with the previous problem. Refer there for the bb̄
wavefunctions.

(a) Calculate the partial width for the magnetic dipole transi-
tions for Υ(1S) → ηb(1S). How many events would this give
in a 106 Υ(1S) sample?

(b) Calculate the Υ(2S) → χb(1P ) and Υ(3S) → χb(2P ) E1
transition partial widths. Use the photon energies from the
particle data book or from the measured masses. Compare
to experimental values.

(c) Calculate the ration of the Γ(Υ(1S) → e+e−) : Γ(Υ(2S) →
e+e−) : Γ(Υ(3S) → e+e−). Compare to the exprimental
values.

(d) Overall, how well does this simple calculation work. Can
you explain discrepancies?



Chapter 4

Light Meson Spectroscopy

So far we have looked at heavy quarkonium spectroscopy where I have
argued that the quark model has some connection to QCD. On the
other hand, historically, it was the successes of the quark model in the
light quark hadrons that led many physicists to believe the quark model
has something to do with reality. In what follows we will see that the
quark model does indeed describe the light meson spectroscopy but
there are many puzzles.

Let us begin by considering the figure

What we see in this figure is that there is a smooth evolution go-
ing from the heavy bb̄ system to the relativistic light-quark systems.
Qualitatively we see the smae structure in the heavy and light systems
although in the light systems the relativistic (spin-dependent) splittings
are comparible to the orbital splittings. It is therefore important that
relativistic effects are included.

In the previous chapter we studied the heavy quarkonium spectrum
in detail. In figure – we show the spectrum, including transitions, for
the strange mesons. We see that the spectrum is qualitatively the
same as the charmonium spectrum. The main difference is that for
the strange mesons many more orbitally excited states have been seen.
This is a consequence of the production mechanisms used to study the
strange mesons, Kp→ K∗ + p scattering which can excite many differ-
ent quantum numbers, versus the production mechanism for the char-
monium states, e+e− → ψ via an intermeditate photon which couples
only to JPC = 1−− states. Thus, the study of light mesons examines

51
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Figure 4.1: The evolution of the meson splittings from the heaviest bb̄
states to the lightest uū states

properties complementary to those studied in the heavy quarkonium
systems.

We begin by writing down the flavour wavefunctions for the light
quark mesons. The flavour wavefunctions for the fundamental doublets
are given by:

u = |1
2

1

2
〉 d = |1

2
− 1

2
〉

d̄ = −|1
2

1

2
〉 ū = |1

2
− 1

2
〉

Note that there is a phase for the “up” component of the antiquark
doublet. This is because the antiquark doublet is not equivalent to the
quark doublet. The flavour wavefunctions are given by:

|ρ+〉, |π+〉 = −|ud̄〉

|ρ0〉, |π0〉 =
1√
2
|uū− dd̄〉

|η〉 =
1√
6
|uū+ dd̄− 2ss̄〉

|η′〉 =
1√
3
|uū+ dd̄+ ss̄〉

|ω〉 =
1√
2
|uū+ dd̄〉
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Figure 4.2: The level diagram for the strange mesons.

|φ〉 = |ss̄〉
|K+〉 = |us̄〉
|K0〉 = ds̄〉
|K̄0 = −|sd̄〉
|K−〉 = |sū〉

In heavy quarkonium we used the Hamiltonian

H =
p2

2µ
+ V (r) (4.1)

with

V (r) = −4

3

αs(r)

r
+ br (4.2)

and the meson mass is given by M = mq + mq̄ + E. This is a non-
relativistic formula. For a quark (v/c) ' 〈pE〉 and we obtain the val-

ues:

System v/c
bb̄ 0.26
cc̄ 0.45
ss̄ 0.78
uū 0.9

So clearly the non-relativistic approximation is no

longer valid. What should we do?

• Use it anyway and see what happens. Taking this approach the
general features are O.K.



54 CHAPTER 4. LIGHT MESON SPECTROSCOPY

Figure 4.3: Annihilation mixing in selfconjugate mesons.

• Try to relativize it.

4.1 Annihilation Mixing

In the isoscalar mesons there is an additional complication which we
have so far ignored but which plays an important role in the light quark
mesons: Although one could calculate these in perturbation theory in
the low Q2 regime perturbation theory is not really valid. Therefore
we just parametrize the mixing to reflect the data. We start by writing
the mass matrix: Muū + A A A

A Mdd̄ + A A
A A Mss̄ + A


 uū
dd̄
ss̄

 (4.3)

The nature of the mixing depends on the relative strenght of the anni-
hilation, A.

1. If A = 0 there is no mixing between the strange and non-strange
states. This is equivilent to a 35.3o mixing angle between the
SU(3) singlet and octets and is sometimes referred to as ideal
mixing.

2. If A is small and positive the isoscalar meson is slightly heavier
than the isovector state. For example

Mω > Mρ (4.4)
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3. If A is small and negative the isovector is slightly heavier than
the isoscalar. For example

f2 < a2 (4.5)

4. If A is large and positive there is complete mixing between the
nonstrange and strange sectors. In this case the isoscalar is much
heavier than the isovector. An example of this case are the pseu-
doscalar mesons where Mη >> Mπ and the flavour mixing is
complete.

4.2 Spin Dependent Interactions

We take over the expressions we introduced for heavy quarkonium and
ignore the relativistic corrections except where it is occasionally useful
to comment on the differences they introduce.

4.2.1 ~S1 · ~S2

The 3S1 −1 S0 splitting is given by

∆(M(3S1)−M(1S0)) =
3παs

9m1m2

|ψ(0)|2 (4.6)

This gives rise to the vector-pseudoscalar splittings:
ρ− π
K∗ −K
D∗ −D
B∗ −B
ψ − ηc

We could approximate the 3S1 and 1S0 masses by

M(3S1) = M(S) +
1

4

a

mqmq̄

(4.7)

M(1S0) = M(S)− 3

4

a

mqmq̄

(4.8)
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where a is a parameter which replaces the terms in the above equation.
If a is approximately a constant then

M(ρ)−M(π)

M(K∗)−M(K)
' mums

mumu

' ms

mu

' 500

300
' 1.7 (4.9)

770− 140

892− 495
' 630

400
' 1.7 (4.10)

Similarly

M(K∗)−M(K)

M(D∗)−M(D)
' mumc

mums

' mc

ms

' 1.6

0.55
' 2.9 (4.11)

892− 494

2010− 1870
' 400

140
' 2.9 (4.12)

In general we find that the 3S1 −1 S0 splittings are well described.
In addition the fact that the 3PJ centre of gravity and the 1P1

splitting is not large indicates that the ~S1 · ~S2 interaction is short range
with the properties expected from one-gluon-exchange.

4.2.2 ~L · ~S and the Long-Distance Potential

4.3 Electromagnetic Transitions

As before

ΓM1 =
k3

γ

3π
|〈f |i〉|2|

∑
µiσzi|2 (4.13)

We look at a couple of examples:

K∗+ → K+γ

〈us̄ 1√
2
(↑↓ − ↓↑)| ei

2mi

σz|us̄(↑↓ + ↓↑)〉

=
1

2
〈us̄| eq

2mq

+
eq

2mq

− eq̄

2mq̄

− eq̄

2mq̄

|us̄〉

=
1

2

[
eu

mu

− es

ms

]
=

1

2

[
2

3

1

mu

− 1

3

1

ms

]
(4.14)
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ω → π0 + γ

〈 1√
2
(↑↓ − ↓↑)|σq

z |
1√
2
(↑↓ + ↓↑)〉 = 1

〈 1√
2
(↑↓ − ↓↑)|σq̄

z |
1√
2
(↑↓ + ↓↑)〉 = −1

π0 =
1√
2
(uū− dd̄)

ω0 =
1√
2
(uū+ dd̄)

So

〈π0|
∑

µiσzi|ω0〉 =
1

2
µu −

1

2
µd +

1

2
µu −

1

2
µd

= µu − µd (4.15)

Putting these matrix elements together with the phase space fac-
tors we obtain:

Γ(ω0 → π0γ) =
ω3

3π
|1
2

2

3

e

mu

+
1

2

e

3md

|2|〈f |i〉|2

=
ω3

3π

4πα

4m2
u

=

In addition, we could look at higher relativistic terms which give rise

to higher multipoles:
a2 → πγ M2
a1 → πγ E1
b1 → πγ E1
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4.4 Strong (Zweig Allowed) Decays

4.5 Missing Resonances

4.6 Puzzles in Light Meson Spectroscopy

Problems

1. The magnetic dipole decays of the u,d,s mesons are now
fairly well known experimentally. The transition magnetic
moments for such decays are proportional to

〈f | ei

2mi

σiz|i〉

between initial and final states with sz = 0. ei

2mi
is the

magnetic moments of quark i with spin 1
2
σi and mass mi; in

your calculation use the standard values mu ≈ md ≈ 0.33
GeV and ms ≈ 0.55 GeV. Compare your theoretical values
with the experimental results:

4 Moment experiment (in nuclear magnetons) µ(ρ→ π)
0.67 ± 0.04 µ(ρ → η) 1.7 ± 0.2 µ(η′ → ρ) 1.5 ± 0.3
µ(ω → π) 2.3 ± 0.1 µ(ω → η) 0.37 ± 0.15 µ(η′ → ω)
0.44± 0.12 µ(φ→ η) 0.69± 0.07 µ(φ→ η′) not known
µ(K∗0 → K0) 0.95± 0.22 µ(K∗+ → K+) 0.86± 0.11

Normalize your calculation to µ(ω → π). Use η = 1
2
(uū +

dd̄−
√

2ss̄) and η = 1
2
(uū+ dd̄+

√
2ss̄).

2. The partial width for the Vector meson decay Γ(V → l+l−)
is given by the Van Royen - Weisskopf formula:

Γ(V → l+l−) =
16πα2Q2

M2
V

|ψ(0)|2

where Q2 = |∑ aiQi|2 is the squared sum of the charges of
the quarks in the meson, ψ(0) is the wavefunction at the
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origin and MV is the meson mass. Assumming that for the
ρ, ω, and φ |ψ(0)|2/M2

V is more or less constant, calculate
the ratio of the ρ0, ω and φ leptonic widths. Compare to
experiment.
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Chapter 5

Baryon Spectroscopy

Given the success of the quark model in the meson sector we turn to
the next simplist system, the baryons. Baryons are better understood
experimentally than mesons with various complete multiplets and many
well investigated decay channels. This is because they are produced in
S-channel πN and K̄N scattering while S-channel meson production is
only possible for JPC = 1−− resonances in e+e−.

Baryons are more complicated than mesons because there are now 3
flavours and 3 spins and two relative coordinates which must be com-
bined with colour to give a totally antisymmetric baryon wavefunction,
resulting in much more complicated combinations of the various degrees
of freedom. The baryon wavefunction is a product of

ψ = (space)× (spin)× (flavour)× (colour)

= ψ × χ× φ× C (5.1)

where Cijk = 1√
6
εijk|qiqjqk〉.

Let us start with the spatial part of the wavefunction. In what follows
we will argue that we can approximate the forces between quarks in a
baryon with two-body forces. To see that this is reasonable in some
approximation, consider a quark pair with large separation from the
3rd remaining quark, fig. The resulting colour flux is essentially that
of a meson since, to form a colour singlet, the diquark must combine
to a colour 3̄ which combines with the colour 3 of the remaining quark.
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Figure 5.1:

Thus, we replace the diquark-quark potential with 2-body potentials
having half the strength of the qq̄ potential in a meson:

vqq =
1

2
Vqq̄ (5.2)

This is the same factor of 1/2 that applies to the one-gluon-exchange
part of the potential.

Numerical studies also find that replacing the Mercedes Benz diagram
with a sum of 2-body potentials to be reasonable.

Rather than solve the linear plus Coulomb potential we can follow the
very successful approach of Isgur and Karl which displays all the im-
portant features of a more careful calculation and is also quantitatively
successful.

Isgur and Karl used harmonic oscillator potentials which have the virtue
that one can separate variables to turn the problem into a sum of two
harmonic oscillators.

H =
3∑

i=1

(
mi +

p2
i

2mi

)
+
∑
i<j

V ij
conf +

∑
i<j

H ij
hyp +

∑
i<j

X ij

= Hsi +Hsd (5.3)

where

V ij
conf =

1

2
Kr2

ij + U(rij) (5.4)
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and U(rij) contains deviations from the harmonic oscillator potentials
and is treated in perturbation theory. For example,

U(rij) = −2α

3r
+ br − 1

2
kr2 (5.5)

The hyperfine interactions are given by:

H ij
hyp =

2

3

αs

mimj

8π

3
~Si · ~Sjδ

3(rij) +
1

r3
ij

3~Si · ~rij
~Sj · ~rij

r2
ij

− ~Si
~Sj


(5.6)

and X ij represents all the neglected effects like ~L · ~S etc.

The baryon wavefucntion is of the form

|qqq〉 = (space)× (spin)× (flavour)× (colour)

= ψ × χ× φ× C (5.7)

where Cijk = 1√
6
εijk|qiqjqk〉. We will use the constituent quark masses

mu ' md ' 0.35 GeV, ms ' 0.58 GeV, and mc ' 1.5 GeV. You
should note that the quark masses are parameters of the model and
not fundamental parameters of QCD.

5.1 The Spin-Independent Spectrum

The Hamiltonian for the spin-independent spectrum is given by

H =
3∑

i=1

(
mi +

p2
i

2mi

)
+
∑
i<j

(
1

2
kr2

ij + U(rij)
)

= H0 +
∑

i < jU(rij) (5.8)

We can solve H0 exactly for the eigenstates of H0 and then choosing
k to minimize the perturbation U where U is treated by perturbation
theory.

Our first step is to find the eigenstates of H0. It is convenient to
distinguish 2 cases; where all 3 quarks have equal masses (S=0 and
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S=-3 sectors, uuu, uud, udd, ddd, and sss) and when one quark has a
mass different from the other two.

Let us take m1 = m2 = m and m3 = m′. Referring to fig. we can
obtain new coordinates:

~RCM =
m(~r1 + ~r2) +m′~r3

2m+m′

~ρ =
1√
2
(~r1 − ~r2)

~λ =
1√
6
(~r1 + ~r2 − 2~r3) (5.9)

using the change of variables:

~r1 = ~RCM +
m′

2m+m′

√
6

2
~λ+

1√
2
~ρ

~r2 = ~RCM +
m′

2m+m′

√
6

2
~λ

1√
2
~ρ

~r2 = ~RCM − 2m′

2m+m′

√
6

2
~λ (5.10)

The change of variables gives the Hamiltonian

H =
1

2
MṘ2

CM +
1

2
mρ̇2 +

1

2

(
3mm′

2m+m′

)
λ̇2 +

3

2
kρ2 +

3

2
kλ2

=
p2

CM

2M
+

p2
ρ

2mρ

+
3

2
kρ2 p2

λ

2mλ

+
3

2
kλ2

= HCM +Hρ +Hλ (5.11)

where

mρ = m mλ =
3mm′

2m+m′ pi = miṙi (5.12)

and
ωρ =

√
2k
mρ

ωλ =
√

2k
mλ

α2
ρ =

√
2kmρ α2

λ =
√

3kmλ

so

Enρlρ = (2nρ + lrho+ 3/2)h̄ωrho (5.13)

As stated above we can divide the resulting spectra into two cases
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Figure 5.2:

• All 3 quarks have equal masses S=0 and S=-3 sectors; uuu,
uud, ddu, ddd, and sss.

• Two equal and one unequal S=-1 and -2 sectors uus, uds,
dds, ssu, ssd.

For case I we have

M = 3m

α = (3km)1/4

ρ± = ρ1 ± iρ2

λ± = λ1 ± iλ2

ω = (3k/m)1/2 (5.14)

The wavefunctions are given by

Ψ = ψ
α3

π3/2
e−1/2α2(ρ2+ρ2)(5.15)

where the ψ are given by

N = 0 ψ00 = 1
N = 1 ψρ

11 = αρ+

ψλ
11 = α+

N = 2 ψ00 = 1√
3
α2(ρ2 + λ2 − 3α−2)

ψρ
00 = 2√

3
α2~ρ · ~λ

The

subscripts denote the spherical symmetry of the wavefunction. In gen-
eral each of the oscillators can be excited independently. For example
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Figure 5.3:

in the N=1 levels either the ρ or λ oscillator is excited. For higher
levels we have to combine the excitations of the two oscillators to give
us the total energy. For example, for N=2, we can either put the ρ into
the N=2, L=0 level or put the λ into the N=2, L=0 level, or we could
put both the ρ and λ into N=1, L=1 levels, or we could put either the
ρ or λ into N=0, L=2 levels. For higher levels the number of possible
states proliferates rapidly. The difficulty comes in combining the spa-
tial, spin, and flavour wavefunctions to properly symmetrize the total
baryon wavefunction.

The gross features of the spectrum are given in fig.

For case II we have m1 = m2 = md < m3 = ms or m1 = m2 = ms >
m3 = md. For S = −1

mρ = m

mλ =
3m1m3

2m1 +m3

ωρ = (3k/m)1/2

ωλ =

(
3k

m

2m1 +m3

3m3

)1/2

=

(
3k

m

)1/2√
1

3

(
1 +

2m1

m3

)
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= ωρ

√
1

3

(
1 +

2m1

m3

)
(5.16)

For S = −1 we have ωλ < ωρ and for S = −2 we have ωρ < ωλ. This
breaks much of the degeneracy. The wavefunctions are similar to the
equal mass case.

5.2 Spin Dependent Effects

5.3 Baryon Couplings

5.3.1 Strong Couplings

5.3.2 EM Couplings

Problems

1. For the Baryon Hamiltonian with harmonic confinement forces
sketch the spectrum for the casem/m′ = 0.6 (the ratio of the
masses of non-strange to strange quarks) side-by-side with
the case m = m′.

2. Calculate the magnetic moments of the low lying baryons p,
n, Λ, Σ+, Σ0, Σ−, Ξ0, Ξ−, and ∆++ and the two transition
moments 〈p|µ|∆+〉 and 〈Λ|µ|Σ0〉 and compare to experiment
in a table. Most experimental values are in the particle data
book. The missing ones which are known are (in nuclear
magnetons) µ∆++ = +5.7 ± 1.0, µN∆ = 3.76 ± 0.19, and
µΛΣ = 1.61± 0.08.

3. Using the expression

M(baryon) = m1+m2+m3+A
′

 ~S1 · ~S2

m1m2

+
~S1 · ~S3

m1m3

+
~S2 · ~S3

m2m3


(5.17)
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Derive expressions for the masses of the ground state baryons:
Λ, Σ, Σ∗, N , P , ∆, Ω Ξ and Ξ∗. Verify the equal spacing
rule:

Σ∗ −∆ = Ξ∗ − Σ∗ = Ω− Ξ∗ (5.18)

and the Gell-Mann-Okubo relation

N + Ξ

2
=

3Λ + Σ

4
(5.19)



Chapter 6

Multiquark States

6.1 qqq̄q̄ Molecules

6.2 Final State Interactions

6.3 6 Quarks: Nuclear Physics from the

Quark Model
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Chapter 7

Heavy Quark Effective
Theory (not included)
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Chapter 8

Hadron Spectroscopy
Beyond the Quark Model

8.1 QCD revisted

8.2 Quantum Numbers

8.3 Models of Glueballs and Hybrids

8.4 Gluonium

8.5 Hybrids

8.5.1 Hybrid Decays
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