Limitations and benchmarks of EGSnrc

D. W. O. Rogers,
Carleton Laboratory for
Radiotherapy Physics,
Physics Dept,
Carleton University,
Ottawa

http://www.physics.carleton.ca/~drogers AIFM Workshop, Rome, May 23, 2009

Components of EGSnrc

Things to consider

- -energy range
- -accuracy of models
 - -x-ray fluorescence
 - -brem production
 - -multiple scattering
 - -transport models
- -geometry limits
- -calculation efficiency

Low-energy limitations

Photon cross sections included down to 1 keV

K,L,M shell fluorescence included (some approx above k shell)

Beth-Block stopping power calculations
-assumes unbound electrons
-obviously not true for high-Z materials at energies
low compared to binding energy

Low-energy electron stopping powers

Low-energy electron stopping powers

Does it matter?

Only if transport of < 10 keV electrons matters

(when is that?)

from E S M Ali

Fluorescent x-rays

EGSnrc uses K and L shell individual binding energies but uses averaged values for the M and L shells.

Tungsten

K
$$L_1$$
 L_2 L_3 $\langle M \rangle$ $\langle N \rangle$ 69.5 12.1 11.5 10.2 2.27 0.301

$$< M_k> = rac{\sum
u_{KM_j} E_{M_j}}{\sum
u_j}$$

Xoft: 50 kV brachytherapy source

R Taylor MSc thesis, Carleton U, 2006

Xoft: 50 kV brachytherapy source

electron impact ionization

-creation of a vacancy in the atom directly by electrons (brem + photo-electric)

-available in EGSnrc based on a new theory by Kawrakow -unpublished results improve agreement

with experiment

Backscatter - a tough test: kilovolts Ali & Rogers PMB 53(2008) 1527-1543

Backscatter - a tough test: kilovolts

Backscatter - spectra

Ali & Rogers J Phys D: App Phys 41 (2008)055505

Backscatter: megavolts

Ali et al, in preparation

Geometry issues in BEAMnrc

\$BDY_TOL

parameter re: boundary crossing

-default fine in accelerator simulations

-not OK for kilovoltagebackscatter

1 MeV Al

100 keV Al

00 keV W -5

Accuracy of multiple scattering

Multiple scattering is a dominant physical effect with electrons.

EGSnrc uses a multiple scattering theory developed by Kawrakow (NIMB 134 (1998) 325-336)

It has the advantage of seamlessly converting into a single scattering theory for very short steps.

Recently there have been some high quality measurements done by my ex-colleagues at NRC to test the theory as implemented in EGSnrc

NRC experimental setup

NRC's results

Note the experiment is slightly wider than calculations

Thanks to Malcolm McEwen for the raw data

Med Phys 35 (2008) 4121 - 4131

NRC's results for $\theta_{1/e}$ widths

Experimental uncertainty about 1 %.

How accurately can we calculate ion chamber response? The Fano test

Fano's theorem

Under conditions of charged particle equilibrium the electron fluence in a medium is independent of the density.

Fano cavity chamber,

- full build up wall
- cavity either: gas of wall material or wall material
- perfect CPE => no attenuation or scattered photons

Fano test (cont)

Consider the case with cavity of wall material

$$(K_{col})_{\mathrm{wall}} \stackrel{CPE}{=} D_{\mathrm{wall}}$$

but since, by Fano's theorem the electron fluence is unchanged $\Rightarrow D_{\mathrm{gas}} \stackrel{CPE}{=} D_{\mathrm{wall}}$

and hence:
$$\left(K_{col}
ight)_{
m wall} = E\phi\left(rac{\mu_{en}}{
ho}
ight)_{
m wall} = D_{
m gas} = D'_{gas}K_{
m wall}$$

where D_{gas} is the dose to the gas without any attenuation and scatter (so there is CPE) and D'_{gas} is the dose calculated with attenuation and scatter and then corrected by the wall correction factor, i.e. K_{wall} (not another kerma!)

Fano test (cont)

-cover of EGSnrc manual

-against own cross sections

-ESTEPE is max fractional step size

This is the toughest test I know for any electron-photon Monte Carlo code

Fano test (cont)

- -has been applied to materials up to lead and EGSnrc passes it at 0.1 % level in 60 Co beams (La Russa, submitted to Med Phys). There is no need to adjust simulation parameters to get this accuracy.
- -Sempau and Andreo (PMB, 51 (2006) 3533-3548) showed similar accuracy could be achieved with PENELOPE (using a different version of the Fano test) as did Yi et al (Med Phys 33 (2006) 1213) but in both cases adjustment of parameters was needed.
- -Poon et al (PMB 50 (2005) 681 694) showed that GEANT4 failed the Fano test in ^{60}Co by as much as 39%.

real chambers in 60 Co beams

Whyte: variation of pressure/wal

- data normalized only once
 - •i.e. relative values meaningful
 - depends on cross sections
- RMSD = 0.5%

Nilsson et al: wall variations

- •60Co
- normalized to polystyrene chamber
- •RMSD=1.4% (EGSnrc/expt)
- depends on cross-sections

Burns: variation of graphite chamber

- 60Co
- RMSD = 0.03%
- (0.7% overall variation)

Med Phys 35 (2008) 5629-5640

LaRussa et al: variation of pressure x-ray beams

- experiment = solid line
- EGSnrc = dashed line
- Calculated results generally within 0.5%.

brem yield from thick targets

Faddegon et al Med Phys 17 (1990) 773 and

Med Phys 18 (1991) 727

measured brem yield as a function of energy and angle for many different target materials and compared their results to EGS4 calculations.

Typical experimental uncertainty: 5%

Faddegon et al Med Phys 35(2008) 4308 compared same measured data to 3 Monte Carlo codes:

EGSnrc, GEANT4 and PENELOPE

brem total yield vs incident energy

thick targets
5% uncertainty
on
measurements

photons
> 220 keV

Faddegon et al Med Phys 35 (2008) 4308

brem yield vs angle at 15 MV

thick targets

photons
> 145 keV

Note: yield at 90° is very small

Med Phys 35 (2008) 4308

20 MeV NRC depth-dose

20 MeV NRC radial profile

electron beam depth-dose curves

Siemens MD2 -diodes

electron beam cutout factors

Siemens MD2 -diodes

60 Co therapy unit

Issued June 17, 1988

Thanks to Jerry Battista 35/42

Simulating an Eldorado6

Output variation vs expt

10 & 20 MV beams from NRC linac

NRC research accelerator, everything is known about it, including incident electron beam energy.

Ion chamber measurements.

A systematic problem near surface

The effective point of measurement

Varied the offset for effective point of measurement of ion chamber to establish best offset.

Agreement becomes almost perfect.

This offset is used in TG51/TR5398

Geometry packages

- BEAMnrc for accelerators
- •DOSRZnrc, CAVRZnrc, FLURZnrc for cylindrical geometry
- egs++ package of Kawrakow: a C++ general purpose interface with combinatorial geometry -very flexible
- worth effort to learn it (all my students have)

Calculational efficiency

EGSnrc is much slower than VMC++ (only commercial)

EGSnrc timing is comparable to EGS4 which was comparable to ETRAN/ITS/MCNP for simple geometries

-but MCNP slows down considerably in complex geometries

EGSnrc is 3 to 5 times faster than PENELOPE ignoring variance reduction issues.

EGSnrc is much faster than GEANT4 (5 -10?)

Acknowledgements

- Iwan Kawrakow, Blake Walters and Ernesto Mainegra-Hing of NRC for continued collaboration on EGSnrc
- Thanks to Malcolm McEwen and Bruce Faddegon for providing raw data from the electron scattering experiment and brem production papers respectively.
- Geoff Zhang, Elsayed Ali, Dan La Russa, Waltraud Buchenberg, Daryoush Sheikh-Bagheri, and George Ding whose thesis work I have referred to.
- Support from the Canada Research Chairs program and

