Some recent dosimetry studies with EGSnrc

D. W. O. Rogers,
Carleton Laboratory for
Radiotherapy Physics,
Physics Dept,
Carleton University,
Ottawa

http://www.physics.carleton.ca/~drogers AIFM Workshop, Rome, May 23, 2009

P_{repl}: PhD work of Lilie L W Wang

"Study of the replacement correction factors for ionization chamber dosimetry by Monte Carlo simulation"

Carleton University, **April** 2009 Nominated for a Senate Medal Many slides are from his work

See http://www.physics.carleton.ca/~drogers/pubs/theses and 7 publications referenced therein (on line same site) 2/44

Cavity theory: stopping-power ratios

Relates dose in cavity to dose in medium.

sprs are fundamental to
-dosimetry protocols
-primary standards

$$D_{med} = D_{gas} \left(\overline{L}/
ho
ight)_{gas}^{med}$$

Dosimetry in a water tank with realistic ion chamber

Dosimetry in a water tank

$$D_{ ext{med}} = D_{ ext{gas}} \left(rac{L}{
ho}
ight)_{ ext{air}}^{ ext{med}} P_{ ext{wall}} P_{gr} P_{fl} P_{ ext{cel}}$$

$$P_{
m repl} = P_{gr} P_{fl} = p_{
m dis} p_{
m cav}$$

for complete definitions of P_{wall} etc see http://www.physics.carleton.ca/~drogers/pubs/papers/ss96.pdf

P_{repl} in dosimetry protocols

Electron beams

- "well-guarded" plane-parallel chambers: P_{repl} = 1
- cylindrical chambers: measured P_{repl} at d_{max} (= P_{fl})

Photon beams

- plane-parallel chambers: P_{repl} = 1
- cylindrical chambers: measured P_{repl} = P_{gr}

TRS-398: the uncertainty in value of P_{repl} in photon beams "is one of the major contributions to the final uncertainty in k_0 "

P_{repl} calculation methods (I)

SPR method

$$P_{ ext{repl}} = \left. rac{D_{ ext{water}}}{D_{ ext{air}}} \middle/ \left(rac{\overline{L_{\Delta}}}{
ho}
ight)_{ ext{air}}^{ ext{water}}$$

Need a separate stopping-power ratio calculation.
This is "traditional" technique - residual effect

P_{repl} calculation methods (II)

FLU method

If electron fluence spectrum in air cavity differs from that in water only by a constant, i.e. $\Phi_{\text{water}}(E) = \text{const} \times \Phi_{\text{air}}(E)$, then

$$P_{ ext{repl}} = rac{\Phi_{ ext{Total,water}}}{\Phi_{ ext{Total,air}}}$$

P_{repl} value depends on the above assumption

P_{repl} calculation methods (III)

HDA method

(direct method)

$$P_{ ext{repl}} = \left. rac{D_{ ext{HDA}}}{D_{ ext{air}}} \middle/ \left(rac{\overline{L_{\Delta}}}{
ho}
ight)_{ ext{air}}^{ ext{air}}$$

$$P_{ ext{repl}} = rac{D_{ ext{HDA}}}{D_{ ext{air}}}$$

Replace thin slab of water with thin slab of high density air (HDA) which is same as normal-density air except with water density.

P_{repl} calculation methods (IV)

LDW method

(direct method)

$$P_{ ext{repl}} = rac{D_{ ext{water}}}{D_{ ext{LDW}}}igg/\left(rac{\overline{L}_{\Delta}}{
ho}
ight)_{ ext{water}}^{ ext{water}}$$

$$P_{ ext{repl}} = rac{D_{ ext{water}}}{D_{ ext{LDW}}}$$

Replace air in cavity with low density water (LDW) which is same as normal-density water except with air's density

Dose in water & NACP02 cavity vs cutoff energy at R_{50} in 6 MeV electron beam

- difference due to energy-loss straggling effects on depth-dose
- but ratio
 independent of
 AE or ECUT at
 0.1% stats
- AE 512 3-5 times slower

HDA method: uncertainties

Assumption is that spectra in HDA and water are the same

-if slab
sufficiently thin.

$$P_{ ext{repl}} = rac{D_{ ext{HDA}}}{D_{ ext{air}}}$$

HDA method: slab thickness

Is the variation due to fluence perturbation or? Constant H_2O result => OK with very thin slabs.

HDA method: slab thickness

At least part of the variation is due to variation in Δ which is related to thickness via range of e-

$$rac{D_{\mathrm{water}}}{D_{\mathrm{HDA}}} = \left(rac{\overline{L}_{\Delta}}{
ho}
ight)_{\mathrm{air}}^{\mathrm{water}}$$

Select thickness corresponding to cavity average chord via L=4V/S = 2t, or just t

HDA: is there a perturbation?

If yes, then:

$$rac{D_{\mathrm{water}}}{D_{\mathrm{HDA}}} = \left(rac{\overline{L}_{\Delta}}{
ho}
ight)_{\mathrm{air}}^{\mathrm{water}} P$$

Dose ratio/spr constant (=1) => no fluence perturbation. For greater thickness there is (seen at 2 mm above).

2 possible algorithms for D, 2xthickness better
But difference less than 0.2%

Uncertainty of P_{repl} : perturbation of electron fluence in LDW cavity

$$rac{D_{ ext{LDW}}}{D_{ ext{air}}} = \left(rac{\overline{L}_{\Delta}}{
ho}
ight)_{ ext{air}}^{ ext{LDW}} P$$

NACP02
cavity in
a 6 MeV
e- beam
vs
depth

If there is no perturbation, then ratio of doses/spr = 1.0

P_{repl} at 10 cm depth in water: 60 Co

Under Fano conditions (no attenuation or scatter), P_{repl} should be unity if the method is working.

cavity radius	$0.5 \mathrm{\ mm}$	$3 \mathrm{\ mm}$	5 mm
P_{repl} (normal)	0.9979(7)	0.9961(5)	0.9939(4)
P_{repl} (Fano)	0.9991(7)	0.9993(6)	0.9997(6)

P_{repl}: Overall uncertainty

- statistics can be well less than 0.1%
- -HDA technique, select thickness of HDA corresponding to Δ appropriate for cavity. 1.3 to 3 μ m typically.
- -for low Z, => < 0.2% uncertainty
- -for high $Z \Rightarrow$ large uncertainty since variation in D_{HDA} with thickness is much larger
- -LDW method uncertainty about same due to inability to demonstrate the lack of fluence perturbation between air and LDW

P_{repl} for NACP02 chamber in electron beams and ⁶⁰Co beam

Calculation is done at d_{ref} for electron beams & at depth 5 cm for ^{60}Co beam

	SPR	FLU	HDA	LDW
6 MeV	0.9956 (0.06%)	0.9977 (0.10%)	0.9976 (0.08%)	0.9959 (0.06%)
18 MeV	1.0001 (0.06%)	1.0007 (0.06%)	1.0011 (0.07%)	1.0005 (0.05%)
60 <mark>Co</mark>	1.0059 (0.10%)	1.0063 (0.10%)	1.0062 (0.10%)	1.0065 (0.10%)

In all dosimetry protocols: $P_{repl} = 1$

P_{repl} for Farmer chamber in ⁶⁰Co beam

Cavity diameter: 6 mm

Cavity length: 2 cm

Depth in water: 5 cm

SPR	FLU	HDA	LDW
0.9963	0.9952	0.9969	0.9974
(0.08%)	(0.08%)	(0.09%)	(0.07%)

P_{repl} value in dosimetry protocols:

AAPM 0.992 IAEA 0.988

P_{repl} for photon beams (AAPM)

TG-21/TG-51 use values based on measurements by Cunningham and Sontag (1980)

The MC values differ considerably but duplicated the original measurements.

Conclusion:

Original interpretation of measurements in terms of P_{repl} was incorrect.

P_{repl} for photon beams (IAEA)

IAEA uses values of Johansson et al (1977).

- -values even farther from the Monte Carlo values
- problem was way in which the data were normalized between chambers with different radii
- using their normalization Monte Carlo of the experiment matches their results
- using correct normalization Monte Carlo of their experiment yields same result as Monte Carlo of P_{repl}

P_{repl} for Farmer chamber in photon beams

Lower two lines

Equivalent from effective point of measurement as labelled

The ratio of P_{repl} in a photon beam to that in a ⁶⁰Co beam vs beam quality

Good news

It is only this ratio that matters in TG-51 & TRS-398

Difference not as much as absolute value

24/44

P_{repl} in photon beams

$$egin{array}{lll} P_{repl} &=& 0.9974 - 0.00183 \; r + 3.36 imes 10^{-5} \; \% dd (10)_x - 2.7 imes 10^{-5} \; r^2 \ &- 1.6 imes 10^{-7} \; (\% dd (10)_x)^2 + 1.58 imes 10^{-5} \; r \; \% dd (10)_x, \end{array}$$

$$egin{array}{lll} P_{repl} &=& 1.0021 - 0.00188 \ r - 0.0108 \ TPR_{10}^{20} - 2.5 imes 10^{-5} \ r^2 \ &+ 0.009 \ (TPR_{10}^{20})^2 + 0.00169 \ r \ TPR_{10}^{20}, \end{array}$$

The Value of (W/e)air

(W/e)_{air} plays a central role in radiation dosimetry

It links the charge measured to the dose

$$D_{
m air} = \left(rac{W}{e}
ight)_{
m air} rac{Q}{m_{
m air}}$$

$$N_{
m gas} = N_D = rac{\left(rac{W}{e}
ight)_{
m air}}{m_{
m air}}$$

 $(W/e)_{air}$ drops out of TG-51/TRS-398 on the assumption it is a constant.

BUT the world's air kerma standards are all directly proportional to its value

Measuring (W/e)air

In graphite determine D_{gr} using a calorimeter.

Then using a graphite-walled ion chamber, measure the absorbed dose using an ion chamber

$$D_{gr} = rac{Q}{m_{
m air}} \left(rac{W}{e}
ight)_{
m air} \left(rac{\overline{L_\Delta}}{
ho}
ight)_{
m air}^{
m gr} P_{
m repl}$$

Experiment actually extracts the product (W/e).spr

Result directly linked to P_{repl} value

Niatel et al, PMB 30(1985) 67-75

Calculations of P_{repl}

Two values

-point of measurement

-at front-at mid-plane

EGS4 Ferreira et al 43 (1998) 2721

BIPM calns for K_{an} based on same techniques have been shown incorrect for K_{an}

EGS4 vs EGSnrc calculations

EGS4: Ferreira et al 43 (1998) 2721

P_{repl} experimental verification

measured ratios for

front/mid-plane values vs depth

Both calculations agree.

Ferreira et al also measured ratio of P_{repl} for BIPM & IRD chambers vs depth and our calculated results agree with the measurements.

(W/e) from multiple calorimeter

Change: 1.2%

- really measuring (W/e).spr

(1.6%variation)

W/e value: Niatel et al

Niatel et al used another method to measure

- using the measured activity they calculated the collision air kerma
- they took the measured exposure rate and divided by $(W/e)_{air}$ to get the collision air kerma
- -solve resulting equations for (W/e)air.spr
- (W/e)_{air}.spr is inversely proportional to exposure
- original 33.81 J/C +-0.42% becomes 33.61+-0.23%

W/e value: Niatel et al

Calorimetric method: new Prepl

34.01 J/C --> 33.61 J/C

Exposure/activity method: new exposure standard 33.81 J/C --> 33.61 J/C

But really measuring product $(W/e)_{air}$ spr and the spr $(L/\rho)_{gr,air}$ is uncertain

W/e.spr value: reanalysis

6 experiments contribute to the value of this product

Re-analyzed all (not all used wrong value of P_{repl})

Rowan Thomson, in preparation

W/e.spr value: reanalysis

33.97 (5) J/C --> 33.65 (3) J/C 0.95% change from a value with stated uncertainty of 0.15%

Implies world's air kerma standards for 60Co will need to be reduced by 0.95%.

Implications for W/e value (without spr) unclear until issue of the best value of $(L/\rho)_{gr,air}$ is resolved

Determining effective point of measurement: matching depth-ionization curves

Use calculated depth-ionization curve

$$D_{\mathrm{water}} = D_{\mathrm{air}}^{\mathrm{ideal}} \left(rac{\overline{L}_{\Delta}}{
ho}
ight)_{\mathrm{air}}^{\mathrm{water}}$$

Vary the offset s

$$z_i = z_{0,i} + s$$

to minimize d(s)

$$d(s) = \sqrt{rac{\sum_i \left[D_{\mathrm{air}}^{\mathrm{ideal}}(oldsymbol{z}_i) - lpha \cdot D_{\mathrm{air}}(oldsymbol{z}_{0,i})
ight]^2}{N}}$$

Shift for cylindrical chamber in 6 MeV electron beam

Shift for cylindrical chamber in 22 MeV electron beam

Shift for NACP02 chamber in 6 MeV electron beam

Shift for Markus chamber in 6 MeV electron beam

P_{wall} for plane-parallel chambers in electron beams

protocols currently all use P_{wall}=1.0

for all planeparallel chambers

Buckley & Rogers, Med. Phys. 33(6), 1788 (2006)

P_{repl} vs depth for NACP02 chamber in 6 MeV electron beam

Conclusions

- Monte Carlo calculations can contribute to ion chamber dosimetry
- P_{repl} values for plane-parallel chambers are not unity in electron beams as assumed in protocols
- effective point of measurement is not exactly the front of the cavity for plane-parallel chambers in electron beams and is close to the centre of the cavity in photon beams
- values of (W/e)_{air}.spr need to be revised downwards by 6 times their stated uncertainty

Acknowledgements

- the work reported on here is almost entirely from the PhD work of Lilie Wang http://www.physics.carleton.ca/~drogers/pubs/theses
- the work of Rowan Thomson and Lesley Buckley was also referred to.
- Work supported by the Canada Research Chairs program, an OGS scholarship (for LLW Wang) and

