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Monte Carlo Techniques of Electron and Photon
Transport for Radiation Dosimetry

D. W. O. ROGERS and A. F. BIELAJEW
DIVISION OF PHYSICS
NATIONAL RESEARCH COUNCIL OF CANADA
OTTAWA, ONTARIO, CANADA K1A OR6

I. Introduction

In this chapter we discuss the Monte Carlo simulation of the transport
of electrons and photons through bulk media in the energy range 10 keV
to 50 MeV. The Monte Carlo technique consists of using knowledge of the
probability distributions governing the individual interactions of electrons
and photons in materials to simulate the random trajectories of individual
particles. One keeps track of physical quantities of interest for a large
number of histories to provide the required information about average
quantities and their associated distributions.
Many problems in radiation dosimetry, radiotherapy physics, and radi-

ation protection have been addressed by Monte Carlo techniques because
the complexity of electron and photon transport in material renders an-
alytic solutions intractable. The use of Monte Carlo techniques in these
fields has increased dramatically in the last few years for a combination
of reasons. One is the rapid increase in speed and decrease in cost of data
processing. At the same time, large, general-purpose software packages
have become available. Furthermore, the use of high-energy photon and
electron beams for radiotherapy makes it essential to take into account
electron transport for dosimetry and treatment planning purposes. This
can be done in complete generality only by using coupled electron-photon
Monte Carlo calculations.
Monte Carlo techniques were originally developed, and are still exten-

sively used, to study neutron and photon transport for nuclear power
427
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reactor applications. Neutron and photon problems are in some ways inherently
simpler than those for electrons because the number of neutron and photon in-
teractions is low enough that each interaction event may be simulated explicitly.
In the case of electrons, the large number of interactions necessitates a more
complex approach, which also greatly increases the computing time per particle.
On the other hand, electron and photon cross sections are relatively smooth in
the energy range of interest. This greatly simplifies calculations compared to
neutron transport, where the cross sections vary rapidly.

Although electron transport via Monte Carlo techniques has not received as
much attention as neutron and photon transport, two widely used and very
sophisticated approaches are available. One is based on the ETRAN (electron
transport) codes originally developed at the National Bureau of Standards by
Berger and Seltzer (1973). The other is based on the EGS (electron-gamma-
shower) code developed by Ford and Nelson (1978) at the Stanford Linear
Accelerator Center.

A Monte Carlo simulation code has four major components: (1) the cross-
section data for all the processes being considered in the simulation, (2) the
algorithms used for the particle transport, (3) the methods used to specify the
geometry of the problem and to determine the physical quantities of interest,
and (4) the analysis of the information obtained during the simulation.

While the last two components can greatly affect running time, they do not
affect the underlying physics of the simulation. Hence, when we speak of the
EGS or ETRAN code we really mean only the first two of these components.

The purpose of this chapter is to give an overview of Monte Carlo simulation
of electron and photon transport and to indicate the accuracy of these tech-
niques. Chapter 6 in this volume gives examples of the use of this technique
to solve radiotherapy physics problems. Major emphasis is given here to the
ETRAN and EGS codes, since one gains insight into the general technique by
understanding the differences in these codes and, perhaps more importantly, be-
cause most future applications and developments should be built on the many
years of effort already invested.

II. Monte Carlo Codes

II.A. OVERVIEW: THE MONTE CARLO TECHNIQUE

II.A.1. What Is Monte Carlo?

Monte Carlo techniques are used in a wide range of scientific endeavors and the
term has a variety of different meanings (see, for example,
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Shreider, 1966). In the context of radiation transport, Monte Carlo techniques
are those which simulate the random trajectories of individual particles by
using machine-generated (pseudo-)random numbers to sample from the proba-
bility distributions governing the physical processes involved. By simulating a
large number of histories, information can be obtained about average values of
macroscopic quantities such as energy deposition. Moreover, since one follows
individual particle histories, the technique can be used to obtain information
about the statistical fluctuations of particular kinds of events. It is also pos-
sible to use the Monte Carlo technique to answer questions which cannot be
addressed by experimental investigation, such as “What fraction of these elec-
trons were generated in the collimator versus the filter?” or “How often have
certain photons undergone Compton scattering?”

In contrast to Monte Carlo methods, there are various analytic approaches
for solving the radiation transport equation. Because of the complex nature of
electron transport, most analytic solutions require many simplifying assump-
tions. The early work in this field has been reviewed by Berger (1963). While
analytical techniques have made important contributions to our understand-
ing of electron transport, they are incapable of dealing accurately with the
vast majority of problems of interest today. However, there has been consider-
able recent progress in applying the deterministic method of discrete ordinates
to electron-photon transport calculations (see, e.g., Morel and Lorence, 1986).
This technique may play a significant role in the future, depending on just what
speed can be obtained in practical situations. However, since the technique
solves the transport equation directly, it is not capable of answering questions
about an individual particle’s history in as direct a manner as the Monte Carlo
technique.

In Monte Carlo simulations of electron transport it is time-consuming to
simulate each interaction individually because an electron undergoes a large
number of elastic scatterings from nuclei during its history. Also, in the course
of slowing down, a large number of low-energy “knock-on” electrons are set in
motion and many atoms are left in excited states. These problems are made
tractable by using the condensed-history technique (Berger, 1963), in which
the path of the electron is broken into a series of steps for which the effects
of the large number of individual interactions occurring during the step are
grouped together. One grouping accounts for the large number of deflections
caused by elastic scattering. This uses a multiple-scattering theory such as that
of Moliere (1948) or of Goudsmit and Saunderson (1940). The other major
grouping accounts for the large number of small energy losses through the use
of a continuous slowing-down model. Monte Carlo codes can be divided into
two broad
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categories, called class I and class II by Berger (1963). These are distinguished
by how they treat individual events that lead to bremsstrahlung photons and/or
knock-on electrons. In class I models, the energy losses and angular deflections
associated with all individual events are grouped together and the energy and
direction of the primary electron are not affected by the creation of individual
secondary particles. In class II models, individual interactions affect the energy
and direction of the primary electron when they create knock-on electrons or
bremsstrahlung photons above certain energy thresholds, although the effects of
secondary particle production below these thresholds are still grouped together.
The distinctions between these two classes are dealt with in detail in Section
II.A.5.

II.A.2. Photon, Electron, and Atomic Processes

It is certainly a necessary, if not sufficient, condition that one takes into account
accurately all the relevant physical processes in electron-photon transport if the
Monte Carlo technique is to provide an accurate simulation. In this section we
enumerate the processes which affect simulations in the range from a few kilo-
electron-volts to tens of mega-electron-volts. In Section II.B we review how the
interaction cross sections vary with energy and atomic number in order to make
clear which processes are relevant in a given simulation. Detailed formulas for
cross sections and angular distributions are left to code documentation and
textbooks.

a. Photons. As a photon passes through matter it can experience a variety
of interactions. For energies of the order of 1 MeV, the most common event is
a Compton interaction (also called incoherent scattering), in which the photon
scatters from an electron and sets it in motion. In many calculations it is
adequate to consider this electron as free, but at lower energies the cross sections
are affected by the fact that the electron is initially bound in an atom. The
Compton event also leaves a “hole” in the atom which must be filled (see a
discussion of atomic effects below).

At photon energies above a few mega-electron-volts, pair production begins
to dominate the photon interactions. In this case the photon interacts with the
field of the nucleus, is absorbed, and creates an electron-positron pair. Much
less frequently the photon may interact with the field of an atomic electron.
Unlike pair production in the field of the nucleus, the original electron can take
up a considerable amount of energy in this process and hence it is referred to
as triplet production (e-, e-, and e+). A vacancy is left in the atom.
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At lower photon energies the predominant photon interaction is the photo-
electric effect, in which the photon is absorbed by the atom and a photoelectron
is ejected, once again leaving a vacancy in the atom, usually in the K shell.

The last major photon interaction is Rayleigh (or coherent) scattering, in
which the photon scatters elastically from atoms, molecules, or other structures
in the material. No energy is lost by the photon except for a negligible amount
to the atomic recoil.

Several other photon processes can occur. One is the quite rare double-
Compton effect, in which a second photon appears when a photon scatters from
an electron. Although the process is usually not modeled, the so-called Mork
correction includes this effect in the total Compton cross section. Two other
processes, which are usually ignored completely, are nuclear Thompson scatter-
ing, in which the photon scatters elastically from the nucleus (i.e., low-energy
nuclear Compton scattering), and Delbruck scattering, in which the photon
scatters elastically from the Coulomb field of the nucleus. In photonuclear re-
actions the nucleus absorbs a photon and gives off a nucleon. The predominant
reactions are (y, n) and (y, p), which have a “giant resonance” centered at
roughly 12 MeV for heavy nuclei and 24 MeV for light nuclei. The cross sec-
tions for these reactions are never more than 10% of the total photon cross
section and usually much less (see, for example, Hubbell, 1969; Ahrens et al.,
1975; Berman, 1976; Fuller and Gerstenberg, 1978). These reactions are rarely
important in radiation dosimetry calculations for two reasons. One is that the
photon mean free paths are usually large relative to the geometries of interest
so that the small increase in attenuation has only a minor effect. Second, the
(?, n) cross section often dominates over the (?, p) cross section (especially for
high-Z materials), and the-neutron results in energy deposition only after an-
other nuclear interaction occurs, thus spreading out an already small effect. On
the other hand, for radiation shielding calculations the neutrons may be trans-
ported farther than the original photons and thus dominate leakage through
the shield.

b. Electrons. As electrons and positrons pass through matter they can often
be thought of as continuously losing energy via inelastic collisions with bound
atomic electrons. This can give rise to various possibilities, ranging from an
excited atomic state to a high-energy knock-on electron which leaves behind a
vacancy in the original atom. The creation of knock-on electrons above a spec-
ified threshold energy may be considered separately. For electrons it is usually
modeled using the inelastic Moller cross section, which treats both electrons as
free. The maximum energy transfer to the knock-on electron is one-half of the
initial energy
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since, by convention, the knock-on electron is taken to be the one with the lower
energy. For a positron, the creation of knock-on electrons is modeled using the
Bhabha cross section. The two particles are distinguishable in this case, and
hence knock-on electrons may have energies up to the initial positron energy.

Slowing electrons may also lose energy by radiative processes whereby an
incident electron (or positron) interacts in the field of a nucleus to produce a
photon. As in the case of knock-on electrons, the creation of bremsstrahlung
photons can be considered to have two components: (1) a continuous process
in which the electron produces soft photons below a threshold photon energy
and (2) discrete events which create bremsstrahlung photons above the same
photon energy threshold. Although it is unlikely, an electron or positron can
lose all of its energy to the bremsstrahlung photon it produces.

A slowing or stopped positron can also lose energy by annihilating in a colli-
sion with an electron. At rest, its annihilation creates a pair of 511 keV photons.
Annihilation in flight also leads to two photons which share the total energy of
the positron and electron.

The final major interaction of slowing electrons and positrons is elastic scat-
tering from atomic nuclei. In the types of Monte Carlo calculations discussed
here, this process is usually treated using multiple-scattering theories. In trans-
port simulations for electrons with initial energies of tens of kilo-electron-volts
or less, this process can be simulated as a series of discrete events, but for
higher energies the number of such events becomes prohibitive. For example,
Berger and Wang (1989) estimate that electrons undergo 4000 elastic scatter-
ings in slowing from 500 to 250 keV in aluminum or 7000 scatterings in gold.
To handle this situation, most electron transport algorithms use a condensed-
history technique in which the electron is followed in a series of steps, and a
multiple-scattering theory is used to group individual elastic scattering events
which occurred during the step. c. Atomic. In many of the processes described
above, one product is an atom from which an electron has been removed, usu-
ally from the K shell. These vacancies are then filled by electrons from higher
shells with the attendant creation of fluorescent x rays or Auger electrons. The
fluorescence yield indicates how often an x ray is produced, instead of an Auger
electron, as these vacancies are filled. Its value is small for low-Z materials and
over 90% in the K shell for materials with Z ≥ 60. The higher-shell vacancies
created in this process are also filled. This “relaxation process” can be very
complex. In general, however, the resultant x rays and Auger electrons are of
very low energy unless the original vacancy was in the K shell.
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II.A.3. Photon Transport

Figure 1 presents a flow diagram for a Monte Carlo simulation of photon
transport. The word DETERMINE in the diagram symbolizes an
important concept. At each of these points one makes use of detailed
knowledge of the physical processes involved in photon transport and, by

Figure 1: Logic flow of a Monte Carlo simulation of photon transport.
DETERMINE means that the quantities of interest are found by sam-
pling from the relevant probability distribution using one or more random
numbers.
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sampling from an appropriate probability distribution, determines the param-
eters of the event. In the next section we discuss more specifically how this is
done.

Another concept introduced by Fig. 1 is that of a “stack” of particles. This is
merely a procedure for storing the necessary phase space parameters of particles
generated during the simulation so that they can be processed later. The stack
is essential because at each photon interaction it is possible to create one or more
additional particles (electrons, positrons, fluorescent x rays, etc.) and one must
store the phase space parameters for each particle so that it can be processed
in tum. This procedure is possible because at any point in the simulation the
future of a photon or an electron is independent of its previous history.

Photon histories are terminated because the photon has been absorbed, the
energy of the photon falls below a cutoff and we are no longer interested in it,
or the photon leaves the geometric volume of interest. The details of what to
do when the history is terminated and how to define the energy cutoff depend
on what quantities are of interest in the calculation.

This raises the point that Fig. 1 shows only an algorithm for simulating
the photon transport. This would be of little interest by itself since nothing is
“scored.” By scoring a physical quantity of interest we mean monitoring selected
aspects of the transport process and keeping track of items of interest to us. For
example, if we are interested in absorbed dose we score the energy deposited by
interactions in a particular geometric region. The most efficient way to score
various quantities of interest is discussed in Sections II,D and IV.

II.A.4. Sampling a Physical Process

The inherent nature of virtually all the processes involved in particle transport
is random. At best, our knowledge of each process amounts to knowing the
probability distributions governing the event. For example, knowledge of the
total cross section of a photon in a material does not tell us how far it goes in
the material but only the mean value of its path length prior to an interaction.
We also know that the path lengths are distributed exponentially. Similarly,
differential cross sections give us the probability that a process may occur as a
function of some final-state variable (e.g., energy or angle). Thus an essential
element of any Monte Carlo simulation is the ability to sample the various
probability distributions which describe the physical processes involved and to
simulate the random nature of these individual events. This can be a very
complex task. Fortunately, much work has been devoted to the subject, so
accurate and
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efficient algorithms exist for sampling from all frequently used distributions
(e.g., the Klein-Nishina differential cross section for Compton scattering). For
some of the less frequent processes, various approximations are introduced
and/or the sampling routines become inefficient, but these have little effect
on the overall timing or accuracy of the simulation be cause they are used
so infrequently. Ford and Nelson (1978) have given a general introduction to
sampling methods and a thorough review of all those utilized in the EGS code
(a slightly revised version is reprinted in Nelson et al., 1985). Other general
references are available (Kahn 1956; Butler, 1956; McGrath and Irving, 1975;
Carlsson, 1981).

The general problem of sampling can become complex. Ford and Nelson
require more than 22 typeset pages and 109 equations to derive their sampling
formulas for the complementary bremsstrahlung and pair production differential
cross sections! One can generally use previously writ ten sampling routines.
Nonetheless, it is instructive to review an example. Consider a simple photon
transport model which includes only Compton scattering and pair production
events, with the cross section at a given energy (in reciprocal centimeters)

Σtot = ΣCompton +Σpair

The questions at hand are how far a given photon goes before interacting and
which interaction occurs, that is, how do we implement the first two DETER-
MINEs in Fig. 1? The procedure begins with the selection of two random num-
bers R1 and R2 uniformly distributed between 0 and 1 (see Section II.E). Since
we know that the path lengths of the photons are exponentially distributed, we
must sample from an exponential distribution having a mean path length given
by Σ−1

tot. Any of the above references prove that the variable

x = − 1

Σtot
lnR1 (cm)

is exponentially distributed between zero and infinity with a mean value of
1/Σtot. We have thus DETERMINED that this photon will go a distance x
cm and then interact. We can then DETERMINE which type of interaction
occurs by selecting a Compton interaction if R2 ≤ ΣCompton/Σtot and a pair
interaction otherwise. These are the two simplest but most often used sampling
routines in Monte Carlo simulations.
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II.A.5. Class I and Class II Models and Thresholds for Discrete
Events

Berger (1963) divided electron transport algorithms into two broad classes dis-
tinguished by how the energy of the primary electron is related to the energy lost
in individual interactions. In class I models, the effects on the primary electron
of all interactions of a certain type are grouped together for each condensed-
history step. Class II models group the effects of only a subset of the interactions
for each type and treat the effects of the remaining interactions on an individual
basis. For example, for collisional energy loss a continuous energy-loss model is
used which groups together the effects of all interactions that produce knock-on
electrons with energy below some arbitrary threshold energy. Individual treat-
ment is given to those relatively rare “catastrophic” interactions which create
secondary particles above the same arbitrary energy. These discrete interac-
tions cause the primary electron to lose energy and be deflected. The choice
of the energy thresholds for considering the creation of secondary electrons or
photons as discrete events is arbitrary and a component of the algorithm, not
of the physical processes involved.

One simple form of electron Monte Carlo calculation is the continuous slow-
ing down approximation (CSDA) model in which no secondary particles are
produced and the unrestricted total stopping power is used to account for the
energy loss in each step. The name arises because the electron is thought of as
continuously losing energy along its path, although the algorithm takes finite
steps and the energy appears to drop in discrete steps. In the CSDA model, all
angular deflections are treated using a multiple-scattering theory. The CSDA
model is clearly a class I algorithm.1 However, class I algorithms can be sophis-
ticate enough to include the generation of secondary particles and account for
energy-loss straggling. ETRAN’s treatment of knock-on electrons is done using
a class I algorithm.

Class II algorithms are, in principle, more accurate than class I because
correlations between primary and secondary particles are included. However,
these correlations are significant in only a few very specialized circumstances
(see Section II,G,l). Since EGS uses class II algorithms and ETRAN uses a
class I algorithm, it is worthwhile to examine the differences between these two
classes of algorithms in order to elucidate how EGS and ETRAN, and many
other codes, work.

Table I summarizes some definitions of energy cutoffs and production thresh-
olds. Energy cutoffs are used in both class I and class II algorithms, whereas the
production thresholds apply only to class II algorithms. Electron interactions
which create secondary particles with energies below

1This statement was misleading. Since CSDA models create no secondary electrons,
the distinction between class I and class II has no meaning.
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Table 1:
DEFINITIONS OF ENERGY CUTOFFS AND THRESHOLDS

Electrons
or positrons Photons Meaning

Energy ECUT PCUT Particle histories are terminated
cutoffs for particles with kinetic

energies below these values
Production AE AP The production by electrons of
thresholds secondary particles with

kinetic energy greater than
these values is modeled
explicitly

AE′ Same as above but for total
ECUT′ energies (including rest mass

of electron).

these thresholds are grouped together with other elastic and low-energy loss
events and considered part of a continuous process. The continuous part of
the energy loss is modeled using what is called the restricted stopping power.
This is the part of the stopping power restricted to creating secondary particles
with energies less than the thresholds, AE and AP (see Table I), and hence is
a function of AE and AP (see Section II,B,2).

Elastic electron scattering from atomic nuclei is treated using a multiple-
scattering formalism. Any such formalism which takes into account scattering
from the atomic electrons as well as from the nucleus should, in principle, be
dependent on AE, the threshold for considering knock-on electron production
separately. This is not usually the case, which leads to (a usually unimportant)
double counting of these scatterings. Andreo and Brahme (1984) used another
variation in which elastic scatterings causing large deflections are treated as
discrete events and the remainder of the multiple scattering is simulated using
a Gaussian model.

Figure 2 depicts electron transport in a class II algorithm. In the model
the electron moves in short, straight steps. For each step, a multiple scatter-
ing theory is used to select the angle through which the electron is deflected.
The multiple-scattering theory should also be used to account for the true path
length of the particle during the step. From this true path length one can
deduce the amount of energy lost via continuous processes, including the cre-
ation of knock-ons with energy below AE and bremsstrahlung photons with
energy less than AP. Although the energy deposited by these low-energy parti-
cles is distributed throughout the shaded area about the path, in the model it
is considered to be deposited
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Figure 2: In a class II algorithm, the energy loss and deflection of the slow-
ing electrons are broken into two components. The continuous energy loss
is considered to occur along the straight-line path but in reality includes
energy deposition throughout the shaded area by secondaries with ener-
gies less than the production thresholds AE and AP. Multiple scattering
is taken into account by a deflection in each small step. Discrete interac-
tions create knock-on electrons with energies above AE or bremsstrahlung
photons with energies above AP.

on the path itself. After going distances governed by the appropriate cross
sections, the electron undergoes a discrete interaction and creates a secondary
particle above the production threshold (AE or AP). The secondary particle
is also tracked. The energy of the primary electron is decremented during the
discrete interaction by an amount corresponding to the energy of the secondary
particle. This usually excellent approximation ignores the binding energy of
electrons knocked out of a molecule and any energy taken up by the nucleus or
electron when a bremsstrahlung photon is created.

II.A.6. Energy Loss in a Thin Slab of Water

It is instructive to consider the results of a variety of models for a pencil (zero
area) beam of 20-MeV electrons incident normally on a 0.25cm-thick semi-
infinite slab of water.

In a CSDA model, to first order, all the electrons pass through the slab and
lose the same amount of energy in continuous processes. This energy
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is given by the product of the slab thickness and the total unrestricted stopping
power for 20-MeV electrons in water and amounts to 618 keV or 3.1 % of the
initial energy. At the same time, the electrons have been deflected slightly by
elastic scattering from the hydrogen and oxygen nuclei and by scattering from
the electrons in the water. Figure 3 shows the angular distributions behind the
plate of water as calculated (see Appendix A) by the Moliere multiple-scattering
formalism in EGS and the Goudsmit-Saunderson multiple-scattering formalism
in ETRAN/CYLTRAN. Figure 3 shows that 96% of the electrons are deflected
less than 9o. These angular deflections have little effect on the path length or on
the energy lost passing through the slab. This lack of effect on the average path
length through the slab is why this configuration was chosen as an example.

In the CSDA model used in the example above, both EGS (somewhat mod-
ified) and ETRAN were using a class I algorithm to model the electron2
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Figure 3: Calculated angular distribution of the electrons after an incident
pencil beam of 20-MeV electrons passes through a O.25-cm-thick slab of
water. A CSDA model with no secondaries was used in both cases. The
EGS calculation (histogram) uses the Moliere multiple-scattering formal-
ism and the CYLTRAN calculation (stars) uses the Goudsmit Saunderson
multiple-scattering formalism. Statistical uncertainties are less than the
size of the stars.

2 It is meaningless to talk of Class I when no secondaries are being created.
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transport. Let us now consider a class II algorithm in which knock-on electrons
with a kinetic energy of 1 MeV or greater are created. Energy losses and
angular deflections from two sources are considered: the continuous events and
the discrete events that create knock-on electrons with energies greater than 1
MeV. These discrete interactions are relatively rare; only 2.1% of the 20-MeV
electrons experience one while traversing the 0.25-cm slab of water. However, to
allow for the energy loss that occurs during these events, the continuous energy
loss must be calculated using a restricted stopping power. The unrestricted
stopping power of 2.47 MeV cm−1 is reduced to a restricted stopping power of
2.24 MeV cm−1 by excluding the creation of knock-ons of energy greater than 1
MeV. Thus, when using this class II algorithm, the 97.9% of the electrons that
go through the water slab without creating a secondary electron lose slightly
less energy (560 keV) than those in the CSDA calculation (618 keV). On the
other hand, the electrons which do create a knock-on with energy greater than 1
MeV must themselves lose at least 1 MeV, in addition to the energy loss due to
the continuous processes. As seen by the stars in Fig. 4, this leads to an energy
spectrum with a 1-MeV gap below the electrons that do not create knock-ons
and a distribution from that threshold down to a cutoff at 9.7 MeV. This lower
cutoff occurs because the primary electron and knock-on electron are identical
particles, and by convention the primary electron can lose only one-half of its
energy when creating a knock-on. For incident positrons the distribution would
extend to zero energy.

Despite the significant differences in the energy distributions of the electrons
coming through the plate in the two models, the mean energy loss is the same.
The additional losses due to the discrete events are exactly compensated by
the reduction in the continuous energy loss. Although the class II model ex-
plicitly accounts for deflections of the primary when knock-ons are created, the
number of such events and the size of the deflections are generally so small
that the calculated angular distribution of electrons coming through the plate
is unchanged.

Let us now consider a second class II calculation in which no knock-on elec-
trons are explicitly created but the production of bremsstrahlung photons with
energies greater than 100 keV is accounted for explicitly. In this case roughly
4% of the electrons create a photon and the appropriate restricted stopping
power of 2.05 MeV cm−1 implies that the electrons lose 514 keV via continuous
processes while passing through the plate. Since an electron can give anywhere
from 100 keV to all of its energy to a bremsstrahlung photon, the results with
this model (diamonds in Fig. 4) show a continuous distribution of electron ener-
gies from essentially zero energy to within 100 keV of the continuous-energy-loss
peak. Once again
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Figure 4: Energy distribution of primary electrons, calculated by a variety
of algorithms when a beam of 20-MeV electrons passes through a 0.25-cm
slab of water. Circles, Class I, CSDA calculation3; stars, a class II calcula-
tion that explicitly considers only knock-on electrons above 1 MeV (AE = 1
MeV); diamonds, a class II calculation with bremsstrahlung photons above
100 keV; histogram, calculation creating knock-ons and bremsstrahlung
photons. In all cases the mean energy loss was 618 keV±1%. Note that
the energy axis changes scale at 17 MeV.

the mean energy loss is the same and, to first order, the angular distribution
is identical to that obtained by the CSDA calculation because EGS does not
deflect an electron when it creates a photon. (In second order, the electrons
which create photons are lower in energy and scatter more, but this has a
negligible effect on the angular distribution.)

The third class II model shown by the histogram in Fig. 4 allows for creating
knock-ons with energies greater than 1 MeV and bremsstrahlung photons with
energies greater than 100 keV. The restricted stopping power of 1.83 MeV cm−1

implies that the 94% of the particles that do not experience a discrete interac-
tion lose only 456 keV in the slab. The energy distribution shows two thresholds,
100 keV and 1 MeV below the continuous-energy-loss peak. 3

All of the above models of the passage of incident 20-MeV electrons through
0.25 cm of water correctly predict the angular distributions and

3It was incorrect in the caption to call a CSDA calculation a Class I calculation as
no secondaries are created. It may be acceptable if the energy loss were being sampled
from a straggling distribution, but that is not the case here.
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mean energy losses. However, none of them accurately models physical real-
ity since the production thresholds of 1.0 and 0.1 MeV and the corresponding
thresholds in the electron spectrum have no physical significance. The true en-
ergy spectrum of electrons emerging from the plate is a continuous distribution.
If this were the feature of interest in our calculation, we would be forced to use
very small values of AE and AP. Figure 54 presents the results of one such
calculation using AP = AE = 1 keV. Here the straggling of the energy loss has
been modeled by calculating explicitly the many random events which create
knock-ons. On average, each primary electron created 21 knock-on electrons
and the continuous energy losses represented only one-half of the total energy
loss in the slab.

While this approach provides an accurate representation of the electron en-
ergy spectrum, it requires an inordinate amount of computing time. Andreo
and Brahme (1984) have suggested a useful alternative class II scheme in which
some reasonable value of AE is adopted and energy-

Figure 5: Energy-loss straggling distribution of primary electrons for a
normally incident beam of 20-MeV electrons passing through a 0.25-cm
slab of water. Stars, the class II calculation, done with EGS with AE =
AP = 1 keV; histogram, a class II calculation4 done with CYLTRAN. The
discrepancies between 10 and 18.3 MeV reflect numerical accuracy prob-
lems with the L(LB) distribution in CYLTRAN which have been corrected
recently (see Seltzer, 1989).

4The caption incorrectly states that the CYLTRAN calculation is a Class II calcu-
lation. In fact it is a class I calculation.
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loss straggling from the creation of knock-ons with the energy below AE is han-
dled by sampling a Gaussian energy-loss straggling distribution which smears
out the energies of the continuous energy-loss component.

ETRAN and its descendants follow this approach even further and treat all
energy losses caused by knock-on electrons as a continuous process; i.e., they
use a class I algorithm. To account for the energy-loss straggling due to the
creation of knock-on electrons, ETRAN uses the Blunck-Leisegang (1950) mod-
ification of the Landau (1944) energy-loss straggling distribution [which we call
L(BL)]. At the same time, ETRAN does create knock-on electrons. Since the
L(BL) distribution already decreases the energy of the primary electron to ac-
count for the creation of knock-on electrons, ETRAN does not further decrease
this energy when the knock-on is created. Figure 5 presents the distribution of
electron energies calculated by CYLTRAN (see Appendix A) for our 20-MeV
beam of electrons on a 0.25-cm slab of water. The distribution is in fair agree-
ment with the class II calculation described above, but the class I calculation
takes much less time (for a further discussion, see Rogers and Bielajew, 1986;
Seltzer, 1989).

II.A.7. Electron Transport

As a review of the distinctions between class I and class II models, consider
Fig. 6, which, for simplicity, excludes radiative events. In the class II model,
an electron of initial energy E0 travels a distance t and then creates a knock-on
electron of energy Eδ. Immediately after creating the knock-on, the energy of
the primary electron is E0−tLAE

col −Eδ where L
AE
col is the collision stopping power

restricted to secondaries with energies less than AE and tLAE
col is the energy lost

in continuous processes and deposited along the path t. The creation of the
knock-on causes the primary electron to change direction. The path would also
have been deflected by multiple scattering, which is not shown in Fig. 6. In
the class I model, the electron travels a step length t and creates an electron
somewhere along the path. The energy at the end of the step is not explicitly
affected by the creation of the knock-on electron but is decreased by sampling
from an energy-loss distribution. This could ignore energy-loss straggling and
would then be tScol the path length times the unrestricted collision stopping
power (radiative effects are ignored). To include energy-loss straggling one could
sample the energy loss [denoted ∆E(t) in Fig. 6] from a straggling distribution
such as the L(BL) distribution used by ETRAN. In either case, to conserve
energy, one must subtract the energy of the knock-on electron to calculate the
energy deposited locally because all secondaries have been accounted for in the
∆E(t) term. This
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Figure 6: Distinctions between the uncorrelated energy-loss mechanisms
used in class I algorithms and the correlated energy-loss mechanisms used
in class II algorithms. For simplicity, only discrete interactions creating
knock-on electrons are considered. ∆E(t) is the energy loss sampled from
an energy-loss straggling distribution and L is the restricted collision stop-
ping power for secondaries below energy AE.

procedure is correct in principle, but it can produce unusual answers if not
enough histories are used. In this class I algorithm, the creation of the knock-
on electron does not explicitly affect the direction of the primary electron,
although the multiple-scattering deflection associated with the step (not shown
in Fig. 6) may at least attempt to account for these deflections.

Figure 7 presents a logic-flow diagram for electron transport simulations using
either a class I or a class II algorithm. As in Fig. 1 for photon transport, this
figure shows only the transport part of the code and additional logic would be
required to score quantities of interest. The logic flow has been simplified in
many respects in order to make the figure comprehensible.
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Figure 7: Logic flow for class I and class II Monte Carlo algorithms for
simulating electron transport. DETERMINE has the same meaning as in
Fig. 1. Many details of the simulation have had to be simplified. In
most realistic calculations, the bulk of the computing time is spent in the
multiple-scattering step loops near the middle of the diagram.
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II.B. CROSS-SECTION DEPENDENCE ON ENERGY AND

ATOMIC NUMBER

Numerous cross-section data are required in Monte Carlo calculations and a
major part of any general-purpose code such as the ITS system or EGS is de-
voted to providing these data. This section presents a brief overview of the cross
sections and their functional dependence on energy and atomic number. For
more detailed information see, for example, the texts by Roy and Reed (1968),
Anderson (1984), and Attix (1986), and the data compilations by Berger and
Seltzer [1982a, also published as International Commission on Radiation Units
and Measurements (ICRU) Report. No. 37, 1984b] and Hubbell (1969, extracts
given by Evans, 1968). Uncertainties in these cross sections are discussed in
Section III,A.

II.B.1. Photons

Figure 8 shows the various photon cross sections as functions of the atomic
number Z for energies between 10 keV and 1 0 MeV. One notable feature is
that the more or less straight lines on these log-log graphs indicate Zn func-
tional forms (except for the photoelectric effect, where absorption edges become
important). The Compton effect goes exactly as Z1 because the cross section
based on the Klein-Nishina free-electron approximation was used to plot these
graphs. The 10-MeV graph shows the Z2 dependence of the pair production
cross section. The difference in cross-section dependence for the Compton and
pair processes means that at 10 MeV Compton scattering strongly dominates
for low-Z materials, whereas pair production dominates for high-Z materials.

The photoelectric cross section has an even stronger Z-dependence, from
∼ Z4 to Z5, although the effect of absorption edges changes this for lower
energies and higher Z. This very strong Z dependence of the photoelectric effect
means that an admixture of even very small amounts of elements of high atomic
numbers in low-Z material such as tissue can play an important role in low-
energy simulations.

The functional dependence of coherent or Rayleigh scattering is complex,
varying between Z2 for small angles and Z3 for large angles. The overall cross
section is seen in Fig. 8 to vary as Z2.4 at 10 keV and Z2.7 at 100 keV.

Figure 9 presents the pair production cross section divided by Z2 as a function
of photon energy for hydrogen and uranium. It shows how little departure
there is from the Z2 dependence for this cross section and also that there is a
monotonic increase with photon energy. The cross section for triplet production,
which occurs in the field of the atomic electron, is
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proportional to Z instead of Z2 and so it is relatively more important for low-
Z materials. Figure 10 shows that Z times the ratio of the cross sections for
triplet and pair production is only mildly dependent on material and increases
to between one-half and one for photon energies greater than 10 MeV where pair
production is important. However, in the materials and energy range normally
of interest in dosimetry, the triplet process plays a minor role. EGS treats it as
if it were pair production; i.e., the pair production cross section is increased to
account for the process, but only an e+-e-pair is created.5

Another perspective on the photon cross-section data is presented in Figs.
11 and 12, where the percentage contributions of the various processes to the
total cross section are given as functions of photon energy for carbon and lead.
For low-Z materials the Compton process dominates over a wide energy range
and represents more than half the cross section from -25 keV to 25 MeV for
carbon. For high-Z materials the photoelectric and pair production processes
play more significant roles. Compton scattering is more than half of the cross
section only from ∼600 keV to ∼5 MeV.

Figures 11 and 12 emphasize the relative contributions to the total cross
section, and this is what controls which interactions occur. However, one is
often interested in energy deposition. In this case, the amount of .energy lost
by the photon in each interaction is important. The photon is completely
absorbed in the photoelectric effect and in pair and triplet production, although
some of the energy usually reappears as photons via bremsstrahlung emission,
positron annihilation, or fluorescent x rays. However, in Compton scattering,
the wavelength shift of the photon at a given angle is independent of the incident
energy. Hence, as shown in Fig. 13, at low energies (large wavelengths) only a
small fraction of the photon’s energy is lost, on average, in each collision (∼14%
at 100 keV), whereas at higher energies a larger fraction is lost (∼50% at 60Co γ
energies and 80% at 100 MeV). This means that low-energy photons in low-
Z material can undergo many interactions before they lose much energy. For
example, for a broad beam of 100-keV photons incident on a tissue phantom,
4% of the dose at the maximum of the depth-dose curve is due to photons
which have Compton-scattered 10 or more times (Rogers, 1984b). Rayleigh
scattering is an elastic process and causes no energy deposition. Since this
cross section is generally forward peaked (especially for low-Z materials and
higher energies) and since it generally constitutes 10% or less of the total cross
section, its contribution to energy deposition can often be ignored, although its
influence on the angular distribution of transmitted photons is noticeable (see,
e.g., Johns and Yaffe, 1983).

5An option in EGSnrc now handles triplet production properly.
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Figure 8: Photon cross sections as a function of atomic number Z for the
photon energies shown. The photoelectric (stars), free electron Compton
scattering (diamonds), and pair production (triangles) cross sections are
from Hubbell (1969) and the Rayleigh data (squares) are from Hubbell
and Overbo (1979). The Z dependences shown are based on simple fits
to the data.
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Figure 8: cont



450 D. W. O. Rogers and A. F. Bielajew

1 10 100
photon energy  / MeV

0

1

2

3

4

5

6

7

σ pa
ir /Z

2    
   

  /
m

b hydrogen

uranium

Figure 9: Pair production cross section σpair divided by Z2 versus photon
energy for hydrogen (dashed) and uranium (solid). The similarity of the
curves indicates how closely the cross section scales as Z2

1 10 100
photon energy / MeV

0.00

0.25

0.50

0.75

1.00

1.25

η 
=

 Z
  (

σ tr
ip

le
t/σ

pa
ir) uranium

hydrogen

Figure 10: Z times the ratio of triplet (σtriplet) to pair (σpair) production
cross sections versus photon energy for hydrogen (dashed) and uranium
(solid).



5. TECHNIQUES OF ELECTRON AND PHOTON TRANSPORT 451

10
-3

10
-2

10
-1

10
0

10
1

10
2

photon energy   / MeV

0.1

1

10

100

pe
rc

en
ta

ge
 o

f t
ot

al
 c

ro
s 

se
ct

io
n

Compton

photoelectric

Rayleigh

pair

triplet

C

Figure 11: Percentage contribution of various photon interactions to the
total cross sections of carbon as a function of photon energy. Data are
taken from the EGS4 system (Nelson et al., 1985) and Hubbell (1969) for
the triplet component.

10
-3

10
-2

10
-1

10
0

10
1

10
2

photon energy   / MeV

0.1

1

10

100

pe
rc

en
ta

ge
 o

f t
ot

al
 c

ro
s 

se
ct

io
n

Compton
photoelectric

Rayleigh

pair

triplet

Pb

Figure 12: Percentage contribution of various photon interactions to the
total cross sections of lead as a function of photon energy. Data are taken
from the EGS4 system (Nelson et al., 1985) and Hubbell (1969) for the
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Figure 13 also compares the total Compton cross section per electron, assuming
the electron is unbound, with that taking into account the atomic binding. It
is clear that binding plays an important role at low energies. However, many
codes use the free-electron assumption because the photoelectric effect usually
dominates the cross section at these low energies.

Figure 14 compares the total photon cross section as a function of energy
for hydrogen, water, and lead. Between 1 and 3 MeV the Compton process
dominates and here the cross section is smallest for lead and largest for hydrogen
because it is proportional to the electron density. Above and below this energy
region the cross section for lead becomes significantly higher because the pair
production and photoelectric cross sections increase much more rapidly for high-
Z materials.

Any Monte Carlo code needs access to the cross sections, differential in angle,
in order to simulate the physical processes. We will not review these here for
reasons of space and because decisions about which processes must be accurately
simulated in any given calculation are usually based on the total cross sections
discussed above. The references cited for the total cross sections also discuss
the differential cross sections.

II.B.2. Electrons and Positrons

The cross-section data required for electrons and positrons are somewhat com-
plicated to discuss because class I and class II algorithms characterize the same
data in different ways. In particular, for class II methods the data depend on
the production thresholds for knock-on electrons and bremsstrahlung photons.

Figure 15 presents the unrestricted collision and radiative . stopping powers.
as a function of electron energy for a variety of elements. The unrestricted
collision stopping powers decrease by roughly an order of magnitude between
10 keV and several hundred kilo-electron-volts and then remain roughly con-
stant between 1 and 2 MeV g−1cm2 at energies up to 100 MeV. The energy
dependence is similar for the solid materials shown, whereas for gaseous argon
the stopping power rises more quickly at higher energies because the density
effect (Sternheimer and Peierls, 1971) does not reduce the higher-energy stop-
ping powers as much for gases as for the higher-density solids. The radiative
stopping power is strongly energy dependent, increasing slightly faster than
linearly with the energy (above a mega-electron-volt or so). The radiative stop-
ping power per atom also varies roughly as Z2 like the bremsstrahlung and pair
production cross sections).
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and Seltzer (1982a).



5. TECHNIQUES OF ELECTRON AND PHOTON TRANSPORT 455

Positrons have somewhat different stopping powers from electrons. For col-
lisional losses this is because the Bhabha rather than the Moller cross section
is involved and because a positron can lose all of its energy in a single col-
lision, whereas, by convention, an electron can lose at most one-half of its
energy. Figure 16 shows the ratio of the positron to the electron collision stop-
ping power. At low energies and for high-Z materials the radiative stopping
power for positrons can be significantly lower than that for electrons. Berger
and Seltzer (1982a) proposed the universal curve shown in Fig. 17 to relate
the scaled positron and electron radiative stopping powers caused by nuclear

bremsstrahlung. The scaled stopping powers are given by ϕ
(n)
rad(E) ∝ radiative

stopping power/(E +mec
2)Z2. A more recent paper has discussed this curve

fully (Kim et al., 1986). At 1 MeV, this implies that the positron radiative
stopping power is lower than that for electrons by a few percent in carbon and
by 60% in lead. These effects are not accounted for in current general-purpose
Monte Carlo codes. Although they should not significantly affect any dosime-
try applications, they could play a significant role in specialized applications
involving positron beams.

Class II algorithms for electron transport consider the creation of secondary
particles above energy thresholds in a discrete manner and creation of those
below these thresholds using a continuous model and restricted stopping powers.
Figure 18 shows the variation in the restricted collision stopping power for 2
and 20-MeV electrons in carbon and lead as a function of the maximum energy
of the knock-on electron included in the restricted stopping power. There are
several features to note. First, the restricted stopping power is equal to the
unrestricted stopping power for maximum knock-on energies over one-half of
the incident energy because no knock-ons above this energy can be created.
Second, these curves are not dramatically dependent on Z or E. Third (and
most important), even when restricted to knock-on electrons with energies less
than 1 keV, the restricted stopping power makes up considerably more than
50% of the unrestricted stopping power; i.e., most of the collisional energy loss
occurs in events which give up less than 1 keV.

Figure 19 shows a similar plot for the radiative stopping power. Here we note
that (1) an electron can lose all of its energy to a single photon, (2) one-fourth
to one-third of the radiative energy is lost to photons with energies greater
than 50% of the electron energy, (3) the dependence on electron energy and
Z is not strong, and (4) the restricted stopping power becomes negligible for
low photon thresholds; i.e., virtually no radiative energy loss is due to creation
of very soft photons. This last point means that by using a sufficiently small
threshold for photon production one is, in fact, simulating the production of all
bremsstrahlung photons.
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Figure 21: Scaled bremsstrahlung cross section differential in emitted
photon energy for 20 MeV electrons interacting with carbon and uranium
nuclei. Data are from Seltzer and Berger (1986).

Figure 20 presents data showing the mean free path of 20-MeV electrons
in lead or carbon before the creation of a secondary photon or electron above
the production threshold. Even for very low thresholds, the electrons produce
only a “few” bremsstrahlung photons. From Fig. 19 we know that if we use
a threshold of 1 keV for a 20-MeV electron, the discrete events account for
more than 99.9% of the radiative energy loss. Figure 20 tells us that for the
same threshold, a 20-MeV electron slowing in lead has a mean free path of 0.05
times its CSDA range. Thus it would generate about 1/0.05 = 20 photons while
slowing down if the mean free path between discrete events did not change with
energy. The mean free path actually increases as the electron slows down and
hence even fewer photons would be created.

Figure 20 also shows why it is impossible to simulate the creation of all
secondary electrons. Reducing the. threshold energy from 100 to 1 keV requires
100 times as many secondary electrons to be simulated but accounts for only
15% more of the energy loss (Fig. 18).

Figure 21 presents a comparison of the scaled bremsstrahlung cross section
differential in emitted photon energy, β2Z−2k dσn/dk, for 20-MeV
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electrons in uranium and carbon. It is interesting to note how similar these two
cross sections are even though the corresponding thick-target spectra would be
very different due to photon attenuation in the targets. Note also that it is the
relative flatness of this shape which, in Fig. 19, leads to the linearity of the
curves that are related to the integral of this cross section.

Another aspect of electron transport is the angular deflection of the electrons
by multiple elastic scattering from atomic nuclei. There are approaches to the
description of this effect, such as the multiple-scattering theories of Goudsmit
and Saunderson (1940) or Moliere (1948) and the simpler Gaussian approxima-
tion used by, e.g., Nahum (1975). For a detailed review, see Scott (1963). To
get a feeling for multiple-scattering effects one can consider the mass scattering
power T/ρ which is defined as the increase dθ2 in the mean square angle of
scattering θ2 per unit mass thickness traversed, ρdl (ICRU, 1984a). Figure 22
presents the mass scattering powers of lead and carbon versus electron energy.
Electron multiple scattering is much more important in heavier elements and
decreases rapidly as electron energy increases.
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carbon (dashed) and lead (solid ).
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This completes the overview of cross-section trends. One caveat should be
mentioned, namely that electron cross sections for energies near or below the
binding energy of the medium should be regarded skeptically if binding effects
have been ignored.

II.C. STEP-SIZE EFFECTS

So far we have paid no attention to how to choose the size of each electron step
in a Monte Carlo simulation. Step-size selection can affect dramatically both
the accuracy and the computation time.

At the beginning of an electron step, one knows the initial position xi and
the initial direction ui, and one needs to choose the total path length t to the
end of the electron step. This total path length is used by the various physical
theories to determine (perhaps stochastically) the energy of the electron at the
end of the step, the position at the end of the step xf , and the new direction
at the end point uf , as characterized by the multiple scattering angle θ. The
equations relating uf to ui through θ are fully described by Berger (1963).

To compute the position of the end point of the step xf , one must calculate s,
the component of straight-line transport of the step along the initial direction.
The quantities s and t are depicted in Fig. 23 for a typical electron transport
step. The quantity s is related to uf through the relation

s = (xf − xj) · ui (1) (1)

Berger proposed the following relationship between s and t:

s =
1

2
t(1 + cos θ(t)) (2) (2)

and proved that (s), the average value of s,computed from Eq. (2) is valid
when 8 is small and computed according to the multiple-scattering theory of
Goudsmit and Saunderson (1940). Note that s as computed by Eq. (2) is

Figure 23: A representative electron step depicting the various geomet-
ric components: t, the total (curved) path length of the step; s, the
component of transport distance along the initial direction; p, the lateral
displacement; and 8, the multiple-scattering angle.
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correlated with the multiple-scattering angle and hence it exhibits a distribu-
tion about its mean value. (It is unknown at this stage whether or not this
distribution is accurate.) Lewis (1950) has given the exact expression for (s),

⟨s⟩ =
∫ t

0
dt′⟨cos θ(t′)⟩ (3) (3)

The “path length correction” (PLC), defined as (t − ⟨s⟩)/⟨s⟩, is a relatively
strong function of t and is a measure of the curvature in the electron step. To
illustrate this, Fig. 24 presents the PLC in water versus electron kinetic energy
for various electron step sizes, characterized by the fraction of the electron’s
kinetic energy lost to all collisional processes. One can conclude from this figure
that the PLC is significant except for very high electron energies or very small
step sizes. Thus, for accurate transport one should include a correction for path
length curvature, unless one is willing to pay the cost of calculating electron
histories using exceedingly short steps. Equations (2) and (3), evaluated using
the Moliere multiple
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Figure 24: Path length correction t/⟨s⟩−1 in water versus electron kinetic
energy for various step sizes characterized by the percent energy loss due
to all collisional processes. Calculated using Eq. (3) and the Moliere
multiple-scattering theory. Calculational details are given in Bielajew and
Rogers (1986a, 1987).
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-scattering theory, have been shown to produce reliable results for ⟨s⟩ even for
average angles as large as 1 radian (Bielajew and Rogers, 1986a, 1987). Presum-
ably, this conclusion would also apply to the use of the Goudsmit-Saunderson
multiple-scattering theory since both theories lead to similar angular distri-
butions (Bethe, 1953; Berger, 1963). However, the use of the Fermi-Eyges
multiple-scattering theory (Eyges, 1948) to calculate the PLC (Messel and
Crawford, 1970; Nelson et al., 1985) has been shown to be unsatisfactory for
all energies (Bielajew and Rogers, 1986a, 1987).

Figure 24 illustrates some interesting facts about electron transport. As
the electron energy increases, the electrons tend to travel in straighter lines,
and path curvature due to multiple scattering becomes less important. As one
decreases the electron energy, one notices a “leveling off’ of the curves with
constant energy loss per step. This reflects the fact that, although the electron
steps have more curvature at low energy, the collision stopping power is also
increasing, reducing the relative size of the step for a given fractional energy
loss. A useful rule of thumb (which appears to be merely coincidental) is that,
for electrons in water with energies below about 100 keV, the PLC is roughly
equal to the fractional energy loss.

One should also consider the lateral displacement p of the electron during the
course of a step as depicted in Fig. 23. Berger (1963) proposed the expression

ρ = 1/2t sin θ (4)

which expresses the basic correlation of ρ with the multiple-scattering angle θ.
We have calculated ⟨ρ⟩/⟨s⟩ from Eq. (4), evaluating ⟨sin θ⟩ in the small-angle
approximation (sin θ ≈ θ) and using the first (Gaussian) term in the Moliere
multiple-scattering theory. Figure 25 shows ⟨ρ⟩/⟨s⟩ in water for various frac-
tional collisional energy losses and indicates that it is necessary to include the
lateral displacement for an accurate description of electron transport trajecto-
ries, except at high energies or with very short step sizes.

To illustrate step-size dependence when a PLC and lateral displacement (LD)
are not included, Fig. 26 shows the calculated fractional energy deposited
beyond a boundary at one-half of the CSDA range r0/2 for 1.0-MeV electrons
incident normally on water. The “no PLC or LD” case shows a significant
overestimate that grows with step size (in this case, the fractional energy loss
per step). The results of calculations with PLC and LD do not depend on step
size, if the electron transport is being done accurately. The difference between
the two calculations arises almost entirely from the omission of the PLC. The
effect of lateral displacement
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is less significant, as shown by the results for a fractional energy loss of 0.2
which included the PLC but not the lateral displacements. The PLC defined
in Eq. (3) was used for this and the next simulation, with the average value of
the cosine evaluated using the Moliere multiple-scattering theory (Bielajew and
Rogers, 1986a, 1987). Note that at small step sizes the “no PLC or LD” results
converge to the “with PLC and LD” results, reflecting the fact that small step
sizes provide more accurate electron transport. The lateral displacement can
have large effects as well. Figure 27 demonstrates the calculation of dose in a
cylindrical air cavity, 2 mm in depth and 1 cm in radius, surrounded by 0.5 g
cm−2 carbon walls, irradiated by a broad parallel beam of 1.25-MeV photons.
The dose to the air cavity is known by ionization cavity theory (Spencer and
Attix, 1955; Bielajew, 1986a). The results of the calculations that include the
PLC and lateral displacements are independent of step size, while a similar
calculation
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Figure 27: Ion chamber response to 60Co γ rays as a function of the
electron step size, characterized by the fractional energy loss to low-energy
processes below a 100 keV threshold. The calculation with path length
correction, PLC, and LD, shows no step-size dependence, whereas the
calculation without LD shows a marked dependence.
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that neglects lateral displacements shows a marked dependence on step size.
Step-size dependences of this kind are typical in electron transport calcu-

lations (Seltzer and Berger, 1974; Rogers, 1984a). If one does not properly
account for path length correction and lateral transport, one may still obtain
accurate results by reducing the electron step size. One should take care, how-
ever, not to reduce the electron step size so much as to violate fundamental
constraints of multiple-scattering theory; otherwise, spectacular calculational
artifacts can occur (Rogers, 1984a). It is preferable to include PLC and lat-
eral displacement, thereby greatly reducing step-size dependence. This permits
larger electron step sizes and, potentially, faster execution times (Bielajew and
Rogers, 1986a, 1987). However, these new methods have not been as exten-
sively validated against experimental data as have traditional methods (Berger
and Seltzer, 1973; Nelson et al., 1985).

For the previous two examples, Figs. 26 and 27, electron transport was
simulated in the vicinity of “interfaces.” Interfaces are surfaces that delineate
different scoring regions (e.g., in Fig. 26, the region beyond ro/2) or different
material regions (e.g., in Fig. 27, the air cavity of the ion chamber). Care-
ful electron transport simulation is required in the vicinity of such interfaces.
The underlying reason for this is the fact that the multiple-scattering theories
used by condensed-history Monte Carlo simulations are valid only in infinite
or semi-infinite media. The introduction of interfaces violates the fundamental
constraints of the underlying theories.

To avoid calculational artifacts one must, at least in the vicinity of an in-
terface, shorten the electron steps so that for a majority of them the transport
takes place as if in an infinite medium. EGS4 does this by allowing the user to
control the geometric step length or the fractional energy lost to “continuous”
energy loss processes per electron step. These constraints are chosen with re-
gard to the geometry in which the simulation takes place and apply everywhere,
not only in the vicinity of interfaces. The ETRAN-based codes also control the
amount of energy lost “continuously” per step.

PRESTA (Bielajew and Rogers, 1986a, 1987), an electron transport option
available with the EGS system, employs yet another strategy. In the vicinity
of an interface, electron steps are shortened so that for the majority of them
no part of the actual curved path, or lateral displacement, can straddle the
interface, whether or not the media on either side of the interface are different.
As an electron approaches the interface the steps are reduced until they are so
short that there is almost no path length
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correction associated with the step. At this point lateral displacements are
turned off so that boundary crossing, if it is to occur, can take place without
ambiguity. The reverse holds true as well. As an electron moves away from
an interface its steps are progressively lengthened, but only enough to make it
seem that the transport takes place in an infinite medium.

Whatever the strategy employed, the underlying reason is the same: the
majority of electron paths must take place as in an infinite medium. This is ac-
complished by shortening the electron steps, if only in the vicinity of interfaces.
Some violation of the underlying multiple-scattering theories must occur as an
electron crosses a surface, but if this is allowed to affect only a small fraction
of the total electron path, the quality of the calculated results should not be
unduly compromised.
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Figure 28: Monte Carlo and analytic calculations of the dose components
versus depth for a broad beam of 60Co γ photons on water. Components
arising from the primary, first, second, and third Compton interactions
as well as the total dose are shown. Analytic calculations are shown as
solid lines (Wong et al., 1981) and the Monte Carlo results (Rogers and
Bielajew, 1985) as x’s. The analytic “total” calculation sums the primary,
first, and second scatter contributions while the Monte Carlo calculation
sums all scattering orders.
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Figure 29: Sources of electron contamination versus source-to-surface
distance (SSD) in the 25-MV photon beam of a Clinac-35 accelerator as
calculated by Petti et al. (1983) using EGS. The electron contamina-
tion from the flattening filter and monitor chamber and from the fixed
and movable collimators decreases with distance, while the air-generated
electrons increase with distance.

II.D. SCORING QUANTITIES OF INTEREST

II.D.1. Introduction

Up to this point we have discussed the simulation of electron and photon trans-
port. In this section we discuss scoring or extracting from the simulations the
quantities of interest. One of the major advantages of Monte Carlo techniques is
that we can score many more quantities than are physically measurable except
under unusual circumstances. For example, we can not only score the energy
deposited in a water tank but also keep track of the origin of the electron or
photon depositing the energy and how often it or one of its ancestors were
involved in a Compton scattering event. Figures 28 and 29 show examples of
two calculations in which such scoring techniques have been applied to separate
different scattering components of the dose in a phantom irradiated by 60Co
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photons and to identify the origins of the electron contamination in a 25 MV
photon beam.

II.D.2. Scoring Techniques

In many situations one is interested in scoring a quantity, such as absorbed
dose, averaged over some physical region. These scoring regions mayor may not
coincide with the regions that define the geometry through which the particles
are transported. For example, if one were calculating a depth-dose curve in
a homogeneous medium one could, for transport purposes, consider the entire
slab as one region with no internal boundaries and allocate the energy deposi-
tion into various depth bins. This technique makes the transport simulation as
fast as possible since there are no internal boundaries to cross-and boundary
crossing, or at least checking for it, can take a lot of time. On the other hand,
the allocation of deposited energy can be complicated and necessitate some ap-
proximations, especially if the average electron step size is large compared to
the dimensions of the scoring regions. The other approach is to define the scor-
ing and geometric regions to be the same. Most Monte Carlo codes terminate
particle steps at geometric boundaries (as EGS does) or at least arrange to take
very small steps near the boundaries. In either case, scoring energy deposition
becomes simple and more exact because steps are generally all in one region.
However, the transport can be slowed considerably.

In general, to ensure accuracy we use the second procedure, in which the
scoring and geometric regions are the same. However, we have also found that
using scoring regions different from the geometric regions becomes essential in
certain complex geometries. In these cases, short electron steps must be used
in order to minimize errors.

a. Energy and Charge Deposition. Energy and charge deposition are the
most straightforward quantities to score. They must be scored in regions of
finite dimensions and this can lead to binning artifacts. For example, compare
the “no-multiple-scatter, no-straggle” case with different bin widths as shown
in Figs. 30 and 31.

b. Particle Fluence. Particle fluence (or simply “fluence”) is a point function
which is formally defined as the number of particles entering a sphere per unit
cross-sectional area (strictly speaking, in the limit of an
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infinitesimal sphere). Starting from this definition, it can be shown that the
average fluence in a given region is the sum of the particle track lengths in
that region divided by its volume (see Chilton, 1978, 1979). This relationship
between track length in a volume and average fluence is the basis for scoring
fluence in many Monte Carlo codes. The only drawback is that by nature it
computes the average fluence in a region. In a slab geometry, this restriction
can be overcome by letting the volume of interest shrink to zero thickness, in
which case the track length per unit volume is equivalent to the sum, over the
particles crossing the plane, of (1 + PLC)/| cos θ| divided by the area of the
plane, where (θ is the angle the particle makes with respect to the normal to
the plane (i.e., θ = 0o for normal incidence), and the path length correction
is defined in Section II,C. This quantity gives the fluence at the plane and
follows from the previous formulation because the path length for each particle
in an infinitesimal slab volume of thickness dl is given by (1 + PLC)dl/| cos θ|.
When using this approach one must set some maximum on θ since for θ near
90o, 1/| cos θ| → ∞ and this will distort the fluence calculation. One must then
investigate the sensitivity of the calculated fluence to the choice of cutoff angle
(we find that 5o is often acceptable). For photons, 1 + PLC is unity, but as
discussed in Section II,C it can be significantly different from unity for large
electron step sizes.

Two comments are in order. The technique of scoring particles crossing a
plane is attractive because it calculates the fluence at a specific depth for slab
geometries. For photon or neutron calculations this can be efficient, but for
electron transport simulations, the total path length of low energy electrons is
so short that only a very small fraction of them ever cross a particular plane. It
is virtually essential to use path length per unit volume when scoring electron
fluence spectra for low energies. In this case, a large number of short paths
contribute to the fluence estimate.

The second comment is to emphasize that experiments often measure the
planar fluence (the number of particles crossing a plane per unit area of the
plane) and this is not the same as the fluence (e.g., see Attix, 1986).

c. Statistical Estimation. In most electron transport simulations only the
current parameters of the particles are used in scoring. However, for photon
(and neutron) transport there are various statistical estimation techniques for
scoring various quantities. These techniques for scoring can greatly enhance
the efficiency of certain calculations (for example, the probability of getting
through a shielding wall). These techniques are summarized by McGrath and
Irving (1975), Stevens (1980), and Alm
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Carlsson (1981). Examples from medical physics are given by Persliden and
Aim Carlsson (1986) and Williamson (1987).

d. Tagging a History. One of the advantages of the Monte Carlo technique
is the ability to ask questions about any aspect of the history of a particle.
In the EGS system each particle has a tag associated with it and the value
of this tag, which can be set by the user, is passed to all the descendants of
the particle. The user can interrogate or change this tag under a wide variety
of circumstances (e.g., before or after any particular class of interaction has
occurred, energy has been deposited, or a boundary has been crossed). This
flexible interface to the transport simulation makes it possible to score a broad
range of quantities with ease.

e. Retrospective Versus “On-the-Fly” Scoring. The extreme of retrospective
scoring is to run a simulation, store the parameters of each particle at the end
of each step, and then score or analyze the data using a second program. While
this was a reasonable approach for certain neutron transport calculations, it is
not useful for electron calculations because of the huge quantities of data that
would have to be stored for each of the multiple-scattering steps. It is cheaper
to recalculate.

A more practical form of retrospective analysis is to “bin” certain results
(e.g., fluence spectra) and use these after the simulation to calculate spectrum-
averaged quantities of interest. As long as the quantities of interest or the
fluence spectra do not vary rapidly over any single bin, this procedure is accurate
[as was the case, e.g., in the work on (µ/ρ) by Cunningham et al., 1986].
However, one can lose considerable accuracy with this technique when fluence
spectra are sharply peaked. For example, when calculating the average energy
lost by a particle passing through a thin plate (e.g., Fig. 4, where bins as
narrow as 50 keV were needed), one would lose considerable accuracy by using
wide bins (say 500 keV or greater). In general, the accuracy is no better than
the bin width. For this reason it is often advisable to score parameters directly,
e.g., score the average energy as

E =
1

N

N∑
i=1

Ei

where Ei is the energy of each particle and N is the total number of events,
rather than binning the results into M bins and calculating

E =
1

M

M∑
j=1

EjNj
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where Ej is the “energy” of bin j and Nj is the number of particles in that bin.
There are also classes of problems which require that scoring be done “on-the-

fly.” An example is the calculation of the correction factor Awall for ionization
chambers (Nath and Schulz, 1981; Rogers et al., 1985a). In this case one must
weight the energy deposited in the gas cavity by a factor which depends on
the location of the initial photon interaction giving rise to the electron which
deposits the energy.

II.D.3. Use of Symmetries

Use of symmetries in a problem can greatly improve the efficiency of a Monte
Carlo calculation. In particular, one should strive to reduce the number of
dimensions in a problem whenever possible. For example, in many cases the
distinction between a circular or a square beam is unimportant. If so, simulating
the circular-beam case is much preferred because quantities of interest can be
scored in two dimensions rather than three. If a rectangular beam is critical but
the phantom is a two-dimensional slab geometry (i.e., the composition varies
only with depth), many symmetries can be exploited. For instance, there are
symmetries about both midlines of the rectangle. In scoring fluence or dose,
one can make use of this by adding the data from all four quadrants at the
end of the simulation but before analyzing the results. Another, somewhat
more complex, solution is to treat the symmetry planes as “mirrors” and do
the entire simulation in only one quadrant, letting particles “reflect” from each
symmetry plane. Careful electron transport must be done near these reflecting
planes, but the technique can be very effective.

Another useful application of symmetry, called the reciprocity theorem in
ICRU Report No. 35 (1984a), was pointed out for medical physics applications
by Bruce and Johns (1960). If one tries to calculate the depth-dose curve in a
small region around the central axis for a circular beam of larger radius, a great
deal of time is wasted by simulating all the particles which never enter the small
region near the central axis. For the case of uniform parallel beams incident
normally on slab phantoms, a great deal of computing time can be saved by
applying this reciprocity theorem to make use of most particle histories. This
theorem states that the energy deposited in a cylindrical detector region of
radius rd per unit incident fluence in a beam of radius rb is the same as the
energy deposited in a scoring region of radius rb due to the same incident fluence
of particles in a beam of radius rd. Since the number of histories is proportional
to the incident fluence times the beam area, and since the statistical uncertainty
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is roughly the same when the calculated energy deposition is the same, it is
clearly more efficient to do the calculation with a small beam area and large
detector. For beams and detectors of finite dimensions, the theorem gives

D(rb, rd) = D(rd, rb)r
2
b/r

2
d (5)

where D(r1, r2) is the average dose in a region of radius r2 per unit incident
fluence in a beam of radius r1. In the extreme case, one uses a pencil beam
and large scoring region to determine the central-axis dose in a broad or even
infinite beam [i.e., rd = 0 and rb → ∞ in the terminology of Eq (5)]. It can be
shown that in this case

D(rb, 0) = E(0, rb)/Nt) (6)

where E(O, rb) is the energy deposited in a cylinder of radius rb and thickness
t (in kg m−2) by a pencil beam of N particles and D(rb, 0) is the central-axis
dose per unit incident fluence from a beam radius rb where rb can be infinite.
Using this equation the central-axis depth-dose curves for beams of various radii
can be scored simultaneously by using an incident pencil beam and scoring the
energy deposited in regions corresponding to the radii of the beams of interest.
The results of this powerful theorem also apply for other quantities of interest
such as the particle fluence and particle fluence spectra.

II.E. THE SELECTION OF RANDOM NUMBERS

Monte Carlo calculations attempt to simulate the stochastic nature of particle-
particle interactions by sampling in a random fashion from known particle inter-
action cross sections. This requires a random number generator (RNG) capable
of producing a sequence of truly independent random numbers. The only way
to guarantee such a sequence is to utilize some naturally occurring random phe-
nomenon, such as electrical noise or the decay of radioactive nuclides. However,
it is often impractical to couple such a device to computers.

Digital computers cannot provide a truly random sequence of numbers but
can calculate pseudorandom sequences that are acceptable for most Monte
Carlo applications. These pseudorandom number generators have limitations
which should be understood before one attempts a Monte Carlo calculation.
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The RNG most commonly used in Monte Carlo calculations is of the form

In+1 = (aIn + c) modulus 2k (7)

where In is the nth random integer in the sequence, a is the ”multiplier,” c is
the “increment,” and k is the number of bits in the integers of the computer.
This RNG with the modulus related to the machine word size is an important
subset of linear congruently random number generators (LCRNGs) since it can
produce the number very quickly. An important further subset of LCRNGs is
obtained by setting c = 0 in Eq. (7). This defines the multiplicative congruently
random number generator (MCRNG). LCRNGs and MCRNGs are the methods
of choice for many Monte Carlo codes (Berger, 1963; Nahum, 1975; Andreo,
1980; Nelson et al., 1985) and can produce long sequences of random numbers
with little cost in computing time.

However, LCRNGs and MCRNGs suffer from two major shortcomings. The
first is that they have a finite sequence length, ultimately repeating themselves.
Knuth (1981) gives general guidelines for choosing a and c. For appropriate
choices the sequence lengths of LCRNG and MCRNG have maximum values of
2k and 2k−2(4× 109 and 1× 109, respectively, for 32-bit machines).

In some cases, even this maximum sequence length is inadequate. The Monte
Carlo simulation of a single particle history may consume hundreds or even
thousands of random numbers and an accurate simulation may require in ex-
cess of a million particle histories. To be sure of not cycling a simulation, it is
advisable not to exhaust an RNG or even approach its sequence length. How-
ever, even if the RNG does repeat its sequence, the particle histories will often
still be different because the random numbers must also become synchronized
before causing duplicate histories; i.e., it is only when the initial random num-
ber of a history repeats that the simulation begins to repeat itself. The problem
is that it is virtually impossible to tell when this has occurred. To guarantee the
independence of Monte Carlo histories, it is possible to use alternative forms
of RNGs with longer sequence lengths (Knuth, 1981). However, these RNGs
have been subjected to less theoretical study than LCRNGs. Alternatively, it is
possible to perform 64-bit integer arithmetic on 32-bit computers with random
sequences that are long enough (5× 1018) for any practical calculation (Biela-
jew, 1986b). The factor of 7 increase in time to calculate the random numbers
causes an increase of 15-20% in typical problems.
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The second significant shortcoming of LCRNGs is the fact that n-tuple sets
of random numbers can be highly correlated; i.e., they align themselves along
(n-1)-dimensional hyperplanes in n-dimensional space. For example, if one se-
lects triplet sets of random numbers to define points in a cube, these points
lie on a finite set of planes within the cube. This effect was first discussed in
a paper by Marsaglia (1968). RNGs which distribute the points over many
planes are said to have good “spectral” qualities. For most practical problems,
the fine granularity from many planes will not bias the final result, but even
some of the RNGs distributed by major manufacturers have had bad spectral
qualities and these can have disastrous consequences.

At present no theoretical method exists for predicting the optimum LCRNG
parameters a and c. Rather, a and c must be determined experimentally. Ex-
amples of good parameters have been published (Knuth, 1981; Ehrman, 198I).
Unless one is prepared to undertake extensive testing of new LCRNG parame-
ters, it is safest to use those already evaluated. The EGS4 system, implemented
on a 32-bit machine, uses an MCRNG with a = 663608941, c = 0, k = 32.
Ehrman (1981) showed that this is one of the fastest RNGs available, has over
1100 planes in a unit cube, and has a cycle length of ∼ 109.

The amount of computer code required for an LCRNG is quite small. To
maximize the speed of random number selection, the RNG should be coded “in-
line” whenever it is needed rather than calling a RNG subroutine. Typically, the
time required for executing a subroutine call is equivalent to the time required
to perform several floating-point operations. Therefore, in-line RNG coding
can save significant computing time. For example, when we changed the call to
the VAX random number generator used by the ITS code CYLTRAN (Halbleib
and Melhorn, 1984) to the inline random number generator used by EGS4, we
found the entire CYLTRAN code ran about 15% faster.

II.F. AN EXAMPLE: 20-MEV ELECTRONS ON A SLAB OF

WATER

The case of 20-MeV electrons incident on a flat slab of water has been discussed
often (Seltzer et al., 1978; Nahum, 1975; Andreo and Brahme, 1984; Berger and
Seltzer, 1982b) because it is representative of an important class of problems
in radiotherapy and radiation dosimetry and it also demonstrates a variety of
important concepts.
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II.F.1. Depth-Dose Curves

We will first consider a series of EGS4 depth-dose calculations in which various
physical effects are turned on and off. Recall that Figs. 3 and 4 show the effects
of various processes as a 20-MeV beam passes through a thin slab of water.

First consider a CSDA calculation in which there is no multiple scattering
and no energy straggling. The electrons travel in straight lines and go the same
depth into the phantom, where they deposit their residual cutoff energy. This
would lead to an effectively infinite value of the dose unless the residual cutoff
energy was deposited in a finite-sized depth bin (Fig. 30). If we now include
multiple scattering, there is a large effect as the electrons spread out laterally.
This shortens their depth of penetration and causes a broad peak in the depth-
dose curve because the fluence (which is most usefully thought of as the total
path length per unit volume) has increased due to the scattering. Note that
the multiple scattering has introduced a distribution of depths of penetration,
although the actual
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Figure 30: Depth-dose curves calculated for a broad parallel beam (BPB)
of 20-MeV electrons incident normally on a thick slab of water. The
histogram is a CSDA calculation with multiple scattering turned off. Note
here and elsewhere where multiple scattering is turned off that the value
of the dose at the end of the range is very much an artifact depending on
the width and location of this bin (see the next figure). The stars show
a CSDA calculation with multiple scattering included but with no energy-
loss straggling. In all these calculations, electron histories are terminated
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Figure 31: Same situation as Fig. 30 but with no multiple scattering
(i.e., all electron paths are straight lines) and with energy-loss straggling
included by considering different discrete energy-loss mechanisms. Stars
represent calculations including only the creation of secondary electrons
above 100keV kinetic energy; the short-dash histogram only the creation
of bremsstrahlung photons above 10 keV; the solid histogram no energy-
loss straggling.

distance traveled by each electron is still its CSDA range r0 (less the residual
range at the cutoff energy).

Now consider Fig. 31, in which there is no multiple scattering (i.e., all the
electrons move in straight lines). The creation of knock-on electrons leads to
the curve, shown by the stars, that is lower at the surface because some of the
energy transferred to knock-on electrons is transported into the phantom. There
is a buildup region until a quasi-equilibrium of knock-on electrons is achieved.
At the same time the dose peak at the end of the range has been eliminated
because of the range straggling. Each time a knock-on electron is created, the
path length of the primary electron is reduced. However, if an electron does
not create a knock-on electron, it penetrates far1her than in the true CSDA
calculation because the continuous portion of the stopping power (which is
now given by a restricted stopping power) is smaller. That so little energy is
deposited at the end of this range reflects the fact that most electrons create one
or more knock-on electrons. Thus, energy straggling leads to range straggling
even without multiple scattering. On the other hand, multiple scattering leads
to a different sort of range (really depth) straggling.

For an electron beam with no scattering and no knock-on electron production,
including the creation of bremsstrahlung photons (dashed histogram in Fig. 31)
produces more range straggling than does including
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knock-on electron production while ignoring bremsstrahlung and, in particular,
has more effect on the slope in the dose falloff region. This may seem surprising
since the probability of creating a photon is much lower than that of creating a
knock-on electron (see Fig. 20), but the average energy loss per bremsstrahlung
photon is much higher than that per knock-on electron.

In Fig. 32 the multiple scattering has been turned on again and we present
a comparison of a true CSDA calculation with three calculations that include
different energy straggling. It is again clear that the energy straggling induced
by bremsstrahlung production has a stronger effect on the dose falloff portion
of curves than that from knock-on electron production.

II.F.2. Fluence Versus Depth

It is also instructive to consider the electron and photon fluences (defined in
Section II,D,2) as functions of depth in water irradiated by a 20
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duced by creation of bremsstrahlung photons with energy greater than 10
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MeV electron beam. The histograms in Fig. 33 show that the total fluence
of primary electrons per unit incident fluence is very close to unity near the
surface and grows by roughly a fifth due to multiple scattering. Only beyond
the fluence maximum does the fluence of primaries exhibit a slight dependence
on the cutoff energy, as the fluence of primary electrons between the various
cutoffs (10-500 keV) becomes significant. Figure 33 also presents the total
fluence per unit incident fluence of electrons with energies above the cutoffs of
10-500 keV. As expected, the total fluence is a strong function of the cutoff
energy chosen.

The photon fluence is seen to build up steadily as long as there are high-
energy electrons in the beam to create the bremsstrahlung. Past the electron
range, the photon fluence decreases due to attenuation. Note that the photon
fluence reaches a peak roughly 2.5 times as great as the electron
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Figure 33: Fluence, per unit incident fluence, as a function of depth
for a broad parallel beam of 20-MeV electrons incident on water. The
histograms show the fluence of primaries for energy cutoffs ECUT = 10,
200, and 500 keV. The only significant differences are at depths greater
than 6 cm, where the larger cutoff causes the fluence to decrease. The
symbols show the total fluence for various ECUT values (cross, 500 keV;
diamond, 200 keV; star, 10 keV). The smooth curve shows the photon
fluence divided by 4. All calculations were done with AE = AP = 10 keV.
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Figure 34: Fluence spectra, differential in energy, in three depth bins for
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fluence although it makes only a small contribution to the energy deposition.
Figure 34 presents electron fluence spectra differential in energy at three depths
in water irradiated by 20-MeV electrons. The shape of the primary electron
fluence spectrum shows the familiar energy-loss straggling distribution discussed
earlier. The low-energy knock-on electrons are a significant part of the total
spectrum.

II.F.3. Energy Versus Depth

Figure 34 also illustrates the difference between the mean and most probable
electron energies at a given depth. At 5.5-6.0-cm depth, the most probable
energy is 8.8 MeV, whereas the mean electron energies are 6.45 and 5.74 MeV
for primaries and all electrons, respectively. The differential electron fluence at
the mean energy of 5.7 MeV is only 50% of the peak value at 8.8 MeV.

Figure 35 shows how different energy parameters vary as functions of depth
in water. The major point is that one must carefully specify which
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Figure 35: Various energies as a function of depth for the same calcula-
tions as in figures 33 and 34 (20 MeV BPB on water). The plus symbols
represent the most probable energies in the spectrum. The stars and x’s
represent the mean energy for the total fluence spectrum for electron en-
ergy cutoffs of 10 and 500 keV, respectively. The diamonds show the
mean energy of only the primary electrons for a cutoff of 10 keV. Finally
the squares represent the mean energy of the bremsstrahlung photons
generated within the phantom.

energy is meant. The most probable energy of primaries is distinctly higher than
the mean energy. The mean energies of the primaries is the next highest and is
reasonably independent of the energy cutoff value used until a depth of ∼7 cm is
reached, where a higher cutoff causes the mean energy to increase slightly. The
mean energy of the total spectrum is sensitive to the choice of cutoff since low-
energy electrons play a significant role in the spectrum, even near the surface.
Andreo and Brahme (1981) have compared mean-energy calculations from a
variety of Monte Carlo codes.

The average photon energy shown in Fig. 35 increases for the first few cen-
timeters until an equilibrium seems to be established. Past the depth at which
electrons are creating bremsstrahlung, the mean photon energy increases be-
cause the water attenuates the low-energy photons more strongly.
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II.F.4. Beam Radius Effects

So far, we have discussed only broad beams of 20-MeV electrons, but the be-
havior of beams of smaller diameter is also of interest. Figure 36 shows the
central-axis depth-dose curves for circular parallel beams of area 0.01-200 cm2.
These curves are calculated from a single simulation using a pencil beam (see
Section II,D,3). The dose in the narrow beams falls off more quickly, not be-
cause the electrons fail to go as deep but because they scatter away from the
axis without being replaced by other electrons scattered onto the axis. In fact,
these curves can be used to deduce the spread of a pencil beam by considering
the relative values of the dose at one depth. For example, at 5-cm depth a
pencil beam deposits 97% of its dose within a circle of area 50 cm2, 79% within
10 cm2, 55% within 4 cm2, 35% within 2 cm2, 21% within 1 cm2, 11% within
0.5 cm2, and 3% within 0.1 cm2.

II.G. A COMPARISON OF ETRAN AND EGS

Any general-purpose Monte Carlo code contains a large number of compromises
between accuracy and time, both CPU time and programmer’s
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time. A comparison of two such codes, EGS and ETRAN, will serve to illustrate
some of these compromises as well as the limitations of these particular codes,
both of which are in wide use.

A major difference between EGS and ETRAN (and its descendants, in par-
ticular the ITS system) is one of overall system design. The EGS system (Ford
and Nelson, 1978; Nelson et al.,1985 ) is a package of subroutines which sim-
ulates electron and photon transport. It provides users with a well-defined
interface to specify their own geometry and to score the physical parameters
of interest. This has the drawback of requiring users to write their own user’s
code (or find an existing code which addresses their problem) but it makes the
system very flexible. In contrast, the distributed versions of ETRAN (Berger
and Seltzer, 1973) or ITS (Halbleib and Melhorn, 1984) come as complete codes
which allow the user to select one of a wide variety of geometries and elect a
variety of outputs (energy and charge deposited, fluence spectra in each region,
spectra of particles escaping from the geometry, etc.). This makes the codes
easier to use initially since they can be treated as “black boxes,” but it restricts
the user’s options and ability to get information. For example, the EGS results
on the origin of different dose components shown in Figs. 28 and 29 could not
be obtained with the ETRAN-based codes without detailed knowledge of the
inner workings of the code.

There are also many differences in how the codes simulate electron and pho-
ton transport, often reflecting the different origins of the two codes. Although
both systems now cover much wider energy ranges, ETRAN was originally de-
signed for the energy regime below a few mega-electronvolts, whereas EGS was
a high-energy physics code designed for energies up to the giga-electron-volt
region. In what follows we concentrate on differences in algorithms, although
,there are also some differences concerning the cross sections which we will not
discuss because they are “inputs” to the codes and can be changed.

II.G.1. Class I Versus Class II Algorithms

In Section II,A,5 considerable emphasis was placed on the distinction between
class I codes, in which the energy and direction of the primary charged particle
are not correlated with the creation of secondary particles, and class II codes,
in which there is such a correlation. EGS uses class II algorithms, whereas
ETRAN uses a class II algorithm for bremsstrahlung production and a class I
algorithm for the production of knock-on electrons. Collision-induced energy-
loss straggling is described by sampling from the Blunck-Leisegang modification
of the Landau energy-loss straggling distribution, L(BL). Unfortunately, in all
versions prior to
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1987, there was an error in the L(BL) distribution which caused the mean
energy loss to be underestimated. This led to about a 7% underestimate of
dose near the surface for 10-20-MeV electrons on water and caused about a 4%
underestimate of R50 , the depth at which the dose drops to 50% of its value
(see Rogers and Bielajew, 1986, for details). This error was not a fundamental
problem and was corrected in ETRAN in 1987 (Seltzer, 1989) and in Version
2.1 of the ITS system.

The choice of class I or class II models can lead to real differences, which are,
however, rarely significant. Consider the average energy as a function of angle
of 20-MeV electrons passing through a thin (0.2-mm) plate of titanium (e.g., the
exit window of a linac). The average energy lost by electrons passing through
the plate is 236 keV. For a class I code, this would be the average energy lost by
electrons emerging from the plate at any angle (except for small differences due
to increased path length in the plate). In a class II code such as EGS, this is not
the case because electrons which create knock-on electrons are deflected and lose
energy. Hence, the electrons at larger angles have a lower average energy and,
more importantly, the electrons near the central axis will have lost less energy.
Figure 37 shows the magnitude of the differences between the two models as well
as the number of electrons at each angle. These differences between the average
and actual energy loss are not large. For example, the calculation of electron
beam energy after the beam has passed through accelerator exit windows, air,
and possibly scattering foils can be done properly only with a class II algorithm.
However, this distinction between EGS and ETRAN does not play a significant
role.

The class II algorithm in EGS has a slight inconsistency. The multiple scat-
tering formalism includes a term to account for scattering from atomic electrons,
but scattering from these electrons is accounted for explicitly when knock-on
electrons above the threshold energy are created. Although this scattering is
counted twice, the effect is small (Rogers, 1984a).

II.G.2. Multiple Scattering

The other major distinction between EGS and ETRAN is found in the multiple-
scattering formalisms used to account for angular deflections caused by elastic
scattering from nuclei. EGS uses the Moliere (1948) theory, whereas ETRAN
uses the theory of Goudsmit and Saunderson (1940). Berger (1963) gives a
good overview and comparison of the two theories and Berger and Wang (1989)
extend the comparison.

The theory of Moliere contains a small-angle approximation and also requires
a certain minimum number of scattering events to occur. Hence it can be
applied only in a certain range of step sizes. Also, it does not
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Figure 37: Average energy (histogram) and number (stars) of primary
electrons per bin as a function of angle after 20-MeV electrons pass
through 0.2 mm of Ti, as calculated using the class II algorithm in EGS. To
first order, a class I algorithm would calculate a constant average energy
(dash).

distinguish between electron and positron scattering. In comparison, the
Goudsmit-Saunderson theory is exact for a given single-scatter cross section,
can be evaluated in terms of a Legendre series, and can distinguish between
electron and positron scattering (although ETRAN does not use this feature).
However, Bethe (1953) showed how to compensate for the effects of the small-
angle approximation and Berger (1963) has shown that, in practice, there is
often little difference between the two theories. Figure 38 shows Berger’s cal-
culated comparison for 1-MeV electrons and positrons incident on a thin alu-
minum plate. Similar good agreement between angular distributions calculated
with EGS and ETRAN for low-energy electrons passing through a thin slab of
water has been reported (Rogers, I984a).

As discussed in Section II, multiple scattering plays a major role in defining
the shape of the depth-dose curve for broad beams of electrons, especially if
energy-loss straggling is turned off. To investigate the effects of the different
multiple-scattering theories used in EGS and ETRAN, we
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have calculated a series of depth-dose curves for electrons on lead and water
with these two codes. We turned off the production of all secondary particles
and energy-loss straggling to obtain CSDA calculations which emphasize differ-
ences in multiple-scattering formalisms. Figure 39 shows that the two multiple-
scattering formalisms produce very similar results in water over a wide energy
range. Figure 40 shows a similar comparison for electrons on lead. Here, dis-
crepancies of up to 11% of the peak dose occur. These discrepancies are due
in part to the different collision stopping powers used in the two codes, those
used in EGS being -2% smaller above a few mega-electron-volts. The reason
for the remaining differences is probably to be found in the multiple-scattering
formalisms, although other causes may contribute. In particular, the EGS cal-
culations in lead must be done using the PRESTA algorithm (at least below 5
MeV) because the minimum step size for which the Moliere theory is valid is
so large that path length corrections are essential. These differences warrant
further investigation.
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Figure 38: Calculated angular deflections for 1-MeV electrons and
positrons passing through 0.029 g/cm2 of aluminum. The histogram
shows the Moliere results and the symbols show Goudsmit-Saunderson
results for different cross sections: stars, Rutherford cross section; trian-
gles and diamonds, e-and e+, respectively, using the Mott cross sections.
Data from Berger (1963).
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Figure 39: A comparison, at various energies, of the depth-dose curves for
broad parallel beams of electrons on water, calculated using the Goudsmit-
Saunderson multiple-scattering formalism in ETRAN (histogram) and the
Moliere multiple-scattering formalism in EGS4 (stars). In both cases,
the calculations were done in the CSDA approximation without secondary
particles or energy-loss straggling. The depth axis is in terms of the CSDA
range, r0. The EGS4 calculations used the PRESTA algorithm (Bielajew
and Rogers, 1986a, 1987).

Figure 40: Same as Fig. 39 except for beams of electrons on lead.
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II.G.3. Transport at Low Energies and Termination of Histories

Generally speaking, ETRAN handles low-energy transport more accurately
than does EGS, although there are exceptions [in particular, EGS4 has an
option to include coherent (Rayleigh) scattering of photons, a process which
ETRAN lacks]. Both codes contain aspects which are based on the assumption
that electrons are unbound (e.g., electron inelastic-scattering cross sections and
differential Compton-scattering cross sections). Hence, in any situation where
electron binding is comparable to the energy of the particle being transported,
one must exercise care with both codes. This is especially true of electron
transport in high-Z materials, where there are large uncertainties in the stop-
ping powers and interaction cross sections below 100 keV. Even more important
are the approximations contained in the overall model of the transport. One
must use extreme caution when interpreting the results of any calculations in
which the details of electron transport in this regime play a significant role.

One major difference in the low-energy transport models is that the standard
version of EGS does not include the creation of fluorescent photons and Auger
electrons, whereas ETRAN does. ETRAN considers K-shell ionization caused
by the photoelectric effect and by electron impact ionization and then accounts
for production of fluorescent x rays and Auger electrons from the highest-Z
element in the material. For situations in which fluorescent x rays are important
(e.g., fluorescent escape peaks in detectors for low-energy photons), Nelson et
al. (1986) have written a ,subroutine which extends EGS4 to follow fluorescent
x rays (also just from the highest-Z element in the material) after photoelectric
events have created K-shell vacancies. The code SANDYL (Colbert, 1974) and
some of the ITS codes (the P codes; see Halbleib and Melhorn, 1984) consider
electron ionization of all shells, and atomic relaxation from the K, L, M, and
N shells is explicitly taken into account (see Halbleib and Morel, 1978). These
additions require considerable core space and increased run time, but Halbleib
and Melhorn report that “in the vast majority of problems, the P-codes give
results that are virtually identical to those of the standard codes” (which use
the ETRAN model).

Another difference between the ETRAN-based codes and the standard EGS
code is that EGS does not sample the angular distribution of photoelectrons
whereas ETRAN does. We have written a subroutine to extend EGS4 for this
purpose (Bielajew and Rogers, 1986d) but find that it rarely has a large effect
because the multiple scattering of these low-energy electrons tends to dominate
their angular behavior.
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In the ETRAN-based codes, when an electron history is terminated for falling
below the cutoff energy, its kinetic energy and charge are deposited at a point
along its current direction and at a distance randomly chosen from a uniform
distribution up to the residual practical range of the electron. In some situations
this allows a significantly higher cutoff energy to be used in ETRAN than in
EGS, where a particle history is terminated at the end of the step during which
its energy fell below the cutoff.

Another difference in the low-energy transport of the two codes is the use,
in the ETRAN codes, of the Elwert correction factor to modify the Bethe-
Heitler bremsstrahlung cross sections taken from Koch and Motz (1959). This
Coulomb correction factor increases the bremsstrahlung production at low en-
ergies. Although the approximations inherent in its derivation restrict it to
low energies, Berger and Seltzer (1970) applied it up to 15 MeV because it
improved agreement with experimental results. The latest version of ETRAN
(Seltzer, 1989) uses a new set of bremsstrahlung cross sections based on their
own evaluation (Seltzer and Berger, 1986). Even without the Elwert factor,
EGS overestimates by 40% the bremsstrahlung production from 2-MeV elec-
trons incident on a thick tungsten target (Ewart and Rogers, 1982; see Fig. 50
below). Similarly, for 2-MeV electrons on a 3-mm slab of silicon, EGS predicts
more bremsstrahlung than does ETRAN. At 4 MeV and above the differences
are small and, in particular, the predicted backward bremsstrahlung is similar
for both codes (Rogers, 1984a). However, with the exception of cases which
isolate the bremsstrahlung from low-energy electrons, this shortcoming in EGS
is not a major problem because the bremsstrahlung yield from low-energy elec-
trons is only a small fraction of the energy loss and a small fraction of the total
bremsstrahlung production from an electron slowing down from higher energies
(see Fig. 15).

A final difference in the low-energy transport is that EGS4 has an option
to include coherent (Rayleigh) photon scattering, whereas the ETRAN-based
codes (except SANDYL) do not. In order to maintain generality, the EGS
code assumes that coherent scattering occurs from independent atoms. This
can be a good approximation in non-crystalline elements but causes problems
in materials which have molecular or other order in the system, such as liquid
water (Johns and Yaffe, 1983). In general, it has been found that coherent
scatter of low-energy photons has a significant effect on the transmitted and
reflected photons (see, e.g., Persliden and Alm Carlsson, 1984; Williamson et
al., 1984) but that energy deposition is not significantly affected for broad
beams. Figure 41 presents some EGS4 calculations with and without coherent
scattering
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Figure 41: Central-axis depth-dose curves calculated with (dash) and
without (solid) coherent (Rayleigh) scattering in EGS4 for 30-keV beams
of photons on a 30-cm-thick water phantom for incident 1-mm-radius and
broad beams. Percentage differences (shown) between the two calcula-
tions are much greater for the narrow beam because the coherent scat-
tering removes photons from the beam even though it causes no energy
deposition.

which show that for narrow beams, coherent scattering can have a considerable
effect. However, this is for the photon energy at which coherent scattering plays
its greatest role in water (see, e.g., Fig. 11) and at 100 keV the effect, even
for the narrow beam, is reduced by an order of magnitude and is always much
smaller in broader beams.

II.G.4. Step Sizes, Boundary Crossings, Variance Reduction,
and Timing

ETRAN and EGS use different approaches for selecting electron step sizes. In
ETRAN, major step sizes for electron transport are chosen so that, on aver-
age, electron energy decreases by a constant fraction, usually 2−1/8 (= 0.917).
For this step, the energy lost by the electron is determined by sampling from
the energy-loss straggling distribution. Within this major step, a series of n
substeps of equal length are taken. The value
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of n increases with Z, typically being 4 for Al and 16 for W, since smaller steps
must be taken with higher Z to ensure that the electron transport is accurate
without a path length correction (cf. Section II,C). For each of these substeps
the appropriate distributions are sampled to determine the deflection due to
multiple scattering and whether a knock-on electron or bremsstrahlung pho-
ton is produced, or whether K-shell ionization has occurred. If any secondary
particles are created, the appropriate differential cross sections are sampled to
determine the particle energies and directions. Their points of origin are se-
lected randomly along the substep, but the step length of the primary electron
is not affected. Only in the case of bremsstrahlung production does the creation
of a particle directly affect the energy of the primary electron; in the other pro-
cesses this energy loss is already included in the Landau energy-loss straggling
formalism.

In ETRAN, a material boundary is usually crossed in the middle of a sub-
step. When this occurs, the energy loss is recomputed for the distance up to the
boundary, and the last substep is shortened to cause it to end on the bound-
ary. The multiple-scattering deflection in this substep is then sampled using a
Gaussian approximation since the Goudsmit-Saunderson formalism cannot be
sampled for arbitrary step sizes during a simulation.

ETRAN’s technique of more or less fixed step size selection makes it possible
to introduce a variety of variance reduction techniques directly into the standard
version of ETRAN. For example, one can easily create more bremsstrahlung
photons or knock-on electrons by artificially increasing the cross sections (see
Section IV,C).

In contrast, EGS allows all physical processes as well as boundaries to af-
fect the choice of electron step sizes. This is possible because the Moliere
multiple-scattering formalism can be used during the simulation to determine
the deflection for an arbitrary step size within its region of applicability. EGS
first samples the appropriate cross section to determine the distance to the next
discrete interaction on the assumption that it stays within the current material.
It then selects a step size which is the shorter of this distance or the maximum
step size allowed by the multiple-scattering theory (or related constraints such
as ESTEPE, the maximum continuous energy loss per step; see Section II,C).
Finally, if the current step size would cause the electron to cross a boundary,
the step size is reduced to make the electron stop on the boundary. The code
then transports the electron through this step, takes into account multiple scat-
tering, and finally allows the discrete interaction to be simulated if that was
what defined the step size.

This step-size algorithm is very different from that in ETRAN, but aside from
differences between class I and class II models, the different step-size algorithms
do not appear to lead to different results.
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The standard version of EGS uses no variance reduction techniques; i.e., it is a
completely analog model. However, it is designed to allow users to implement
whatever techniques they find useful (see Section IV).

It is appropriate to consider the question of timing in this section because
timing is almost entirely determined by the number of electron steps taken,
and this parameter is under the user’s control to a greater or lesser extent. For
example, if one uses the standard versions of EGS or CYLTRAN to calculate
photon response functions for scintillation detectors (see Rogers, 1982), one
finds that EGS runs about five times faster for comparable accuracy. However,
this is only because EGS uses much larger electron step sizes. Although this
means that the details of the electron transport are inaccurate, it does not
affect the results in this case. In general, the two codes are comparable in
speed (within a factor of 2) for calculations which require similar accuracy in
electron transport -i.e., if, in EGS, we adjust the energy loss per step, ESTEPE,
to be similar to that used in ETRAN.

The above comments apply when variance reduction has not been introduced
and when using a VAX single-precision version of CYLTRAN (Halbleib and
Vandevender, 1976a) or the double-precision version of CYLTRAN from the
ITS package (Halbleib and Melhorn, 1984) and the standard EGS4 code (with
ESTEPE). If we use the PRESTA algorithm with EGS4 (Bielajew and Rogers,
1986a, 1987), we can get factors of up to 5 improvement in computing efficiency
in favorable cases. Hence we expect this code usually to be faster than the
ETRAN-based codes, except where the built-in ETRAN variance reduction
techniques are important.

II.G.5. Other Differences

The ETRAN-based codes consider electrons and positrons to be the same except
that positrons annihilate, creating two 511-keV photons, when their histories
terminate. The EGS system explicitly takes into account the differences be-
tween the electron and positron stopping powers and the Moller and Bhabha
scattering cross sections. In some cases these differences cannot be ignored.
For example, the maximum dose from broad beams of 100100-MeV positrons
on tissue has been shown to be about 5-8% less than that for electrons (Rogers,
1984b). Perhaps more important, even after ignoring the effects of annihilation
radiation (which cause the overall response to positrons to be very different
from that to electrons), the response of a germanium detector for positrons is
significantly different from that for electrons. For example, for a 4-MeV source
the calculated full energy absorption peak for incident positrons is 13%
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lower than that for electrons (Rogers, 1984a). This fact must not be ignored
when calculating response functions for positrons, a fairly common situation in
spectroscopy.

EGS also takes into account positron annihilation in flight. The only study we
know of which directly compares results with and without this process indicates
that it is not a major effect. Grosswendt and Waibel (1975) considered its effect
on the double-escape-peak efficiency of a Ge(Li) detector.

III. Code Accuracy

III.A. CROSS-SECTION DATA

Ultimately, no matter how well the Monte Carlo code works or how much
physics it models, the quality of the calculated results will be limited by the
quality of the cross sections employed. Any result calculated by a Monte Carlo
program should be analyzed with some knowledge of the intrinsic errors in this
most basic component of the code. In this section we discuss the accuracy of
the available photon and electron cross-section data. Additional errors derive
from how the Monte Carlo code tabulates, fits, and accesses the data. For
example, EGS has a discontinuity of several percent in the photon cross section
at 50 MeV because it uses data from different sources above and below this
energy (see Rogers, 1984b). EGS also has severe problems fitting the photon
cross-section data near the photoelectric absorption edges if it is simultaneously
fitting cross sections above several hundred mega-electron-volts. This is because
the grid in some of the fitting procedures becomes too coarse, not because of
any inaccuracy in the cross section.

In this section we do not consider the effect of making approximations that
neglect some of the relevant physics in the energy range of interest. Every code
is different in this respect and such approximations have already been discussed
for the general-purpose EGS-and ETRAN -based codes.

In the next few paragraphs we present an overview of the uncertainties in
various cross-section data. The uncertainties these produce in the final results
are very hard to determine. As an extreme example, a 50% error in the electron
stopping power below 2 MeV would have virtually no effect on a calculated
depth-dose curve for 10-MeV photons because these electrons have a short range
and deposit all of their energy locally. The
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user must always analyze the problem at hand to determine how uncertainties
in cross sections affect the overall uncertainty.

III.A.1. Photons

The estimates of uncertainty for the photon total cross sections come from
Storm and Israel (1970) and Hubbell (1982). In the region where the photoelec-
tric effect dominates (consult Section II,A,2), the uncertainty is 3-5% Although
there is 3% uncertainty associated with coherent scattering in this region, the
overall uncertainty is entirely dominated by the photoelectric cross section. In
general, for the energy region dominated by Compton interactions the cross
sections are accurate to about 2-3% However, for the light elements normally
associated with radiation dosimetry and therapy, the uncertainty may be less
than 1% The cross section for pair production should be accurate to about 5%
but in the energy region up to 30 MeV one must be aware of the uncertainty in
the total cross section associated with the omission of photonuclear processes
(see Section II,A,2).

III.A.2. Electrons

As discussed in ICRU Report No. 37 (1984b), the uncertainty in the electron
and positron collision stopping power is governed by the inaccuracy of the
inelastic-scattering cross section and the approximations inherent in how the
statistical theories sum the many small energy losses. At low energy, between
10 and 100 keV, the ICRU estimates the uncertainty to be 2-3% for low-Z
materials and 5-10% for high-Z materials. Above 100 keV, the uncertainty is
estimated to be 1-2% The uncertainty in the radiative stopping power arises
totally from the uncertainty in the bremsstrahlung cross section since the former
is an integral of the latter. The uncertainties in the ICRU radiative stopping
powers are expected to be about 5% below 2 MeV and 2-5% between 2 and 50
MeV. Codes such as EGS4 and the ITS system, which use older bremsstrahlung
cross section data, will have considerably larger uncertainties and errors in the
radiative stopping powers, especially at low energies.

III.B. OTHER SYSTEMATIC AND STATISTICAL UNCER-

TAINTIES

Aside from errors in the cross-section data, several other sources of error are
inherent in Monte Carlo calculations, both systematic and statistical
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in nature. Too often, systematic errors are not considered and one tends to lend
too much credence to Monte Carlo results. We enumerate the various sources
of systematic errors in the first part of this section.

Since Monte Carlo calculations simulate physical processes by sampling from
particle-matter interaction cross sections in a stochastic fashion, the calculated
results are subject to statistical uncertainties. In the second part of this section
we describe how to calculate these statistical uncertainties. .

In the final part of this section we describe a method for quantifying com-
puting efficiency. This is useful for determining the improvement obtained by
using variance reduction techniques (discussed in Section IV), for comparing
the execution speeds of different computers running the same simulation, or for
estimating the computing time required to obtain a desired statistical accuracy.

III.B.1. Systematic Errors

a. Programming Errors. Monte Carlo codes are large, complicated, integrated
systems of software. No large computer code is free of errors or works exactly
as intended. One major advantage of employing widely used codes is that they
have been checked in a variety of applications. This does not mean all the errors
have been found, and users of these codes should document and communicate
any errors they find to the authors of the codes.

b. Modeling Inaccuracies. Inaccuracies are often associated with the analytic
components of the simulation and reflect the inherent approximations. Until
1987 the Blunck-Leisegang (1950) extension of the Landau (1944) energy-loss
straggling theory used by ETRAN and its descendant codes contained an error,
the effect of which can be seen in Fig. 5 (Rogers and Bielajew, 1986; Seltzer,
1989). Also, the electron path length curvature correction in EGS is known to
overestimate the curvature (Bielajew and Rogers, 1986a, 1987). Fortunately,
this latter error and inaccuracies in some other important aspects of electron
transport (discussed in Section II,C, 1) are greatly reduced if sufficiently small
electron step sizes are employed.

As well as errors in the model employed (as in the above two examples), there
are well-known limits to many of the models used. For example, many codes do
not include coherent scattering or binding effects in Compton scattering. These
are insignificant problems for many calculations
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but could be critical in certain applications. One must always carefully inves-
tigate the limitations of any code being used.

c. Roundoff and Truncation Errors. Sometimes difficulties can occur because
of the finite precision of real numbers as represented by digital computers.
For example, if poorly coded when using 32-bit single-precision floating-point
numbers,

x = 1 +
1,000,000∑

i=1

xi (8)

where xi = 10−8 for all i, gives the answer x = 1.00, not 1.01 as expected.
Accumulation variables used in this fashion should be set to double precision.
Truncation errors sometimes cause problems with the geometric transport of
particles. For example, a particle may be expected to be in one geometric
region when truncation causes it to be in another. Well designed geometry
codes minimize this kind of error and can detect and correct these errors when
they occur. Double-precision coding-helps in this case but does not eliminate
the problem.

III.B.2. Statistical Uncertainties

A Monte Carlo result, like any experimental result, is of virtually no use unless
some estimate of its statistical uncertainty is given. While there is no rigorous
theory on how to assign this uncertainty, it is common practice to break a
Monte Carlo run into a number (NB) of independent batches, each considering
the same number of histories, and to calculate an estimate xi for each quantity
of interest for each batch. With NB such estimates, the final estimate of x is
the average ⟨x⟩ of the xi values. On the , assumption that the Xi are drawn
from a normal distribution, the best estimate of the variance of the mean σ2 is
given by

s2⟨x⟩ =
1

NB(NB − 1)

NB∑
i=1

(xi − ⟨x⟩)2 (9)

Note that s2 is an estimator of the true variance σ2. For NB ≥∼ 10 one can
assert that the interval (⟨x⟩ − s, ⟨x⟩+ s) contains the true value of the mean in
about 68% of all cases, or 95% of all cases for ±2s. There appears to be some
dependence of s on the choice of NB (which should be 10 or larger). Therefore,
when publishing results one should indicate what NB was used.6

6Since this was written, a much improved method has been developed, see Walters
et al, History by history statistical estimators in the BEAM code system Med. Phys.
29 (2002) 2745-2752.
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To combine the results and uncertainties of m independent runs, the following
formulas apply:

⟨x⟩ =
n∑

k=1

Nk

N
⟨x⟩k (10)

and

s2⟨x⟩ =
n∑

k=1

(
Nk

N

)
s2⟨x⟩k (11)

where N is the total number of histories and the subscript k indicates that the
variable is associated with the k-th independent run. Equation (11) requires
the additional assumption that the uncertainties are relatively small, being a
lowest-order approximation.

We have found that calculated uncertainties greater than 5% or so tend to
be slight underestimates . Uncertainty estimates below this appear to be more
accurate and qualitatively agree with what one expects if the distribution of
the xi was truly normal.

However, one must be wary of placing too much faith in these uncertainty
estimates. We have discovered many exciting effects which were statistically
significant at the 95% confidence level. Further computing has “made the ef-
fect go away,” indicating that it was one of the 5% of calculations which are
more than two standard deviations away from the expectation value. Also, one
must take care to recognize when results are correlated. For example, when
calculating a depth-dose curve for high-energy photons, if there happens to be
a large number of photon interactions in one bin, this may show up as a high
dose in several adjacent bins at greater depth.

III.B.3. Computing Efficiency

On the assumption that the individual batch estimates are drawn from a normal
distribution, in the limit of a large number of histories, the quantity Nσ2 is a
constant. It is usual to assume that Ns2 is also a constant. Thus, for a given
calculation, the estimated uncertainty is roughly proportional to the inverse of
the square root of the number of histories used. One can use this relation to
estimate the number of histories it would take to reach a result with a certain
precision, given that one already has one estimate for it with poorer statistics.

The above relation also permits a useful definition of the efficiency of a Monte
Carlo calculation:

ϵ =
1

Ts2
(12)
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where T is the computing time to obtain a variance estimate s2. If the calcula-
tion technique remains the same, ϵ should be constant as long as N is large. The
reason this definition is useful is that when one introduces variance reduction
techniques (see Section IV), the computing time for a given number of histories
will usually increase. However, if the product Ts2 decreases, there has been a
net improvement in computing efficiency (i.e., the time to achieve a given s2

has decreased or, alternatively, the s2 achieved in a given time has decreased).

III.C. EXPERIMENTAL BENCHMARKS

Electron transport and photon transport are extremely complicated physical
processes and the Monte Carlo codes used to simulate them are also very com-
plex. It is essential to evaluate such Monte Carlo codes by comparing calculated
data with high-quality experimental data in order to eliminate coding errors,
to help refine algorithms, and, most important, to estimate the systematic un-
certainties associated with approximations in the codes.

Unfortunately, it is often very difficult to find experimental data which are of
sufficiently high quality, or have a simple enough configuration, for meaningful
comparisons between calculations and experiment. It is preferable to have high-
quality data in very simple geometries in order to do the most meaningful
comparisons-and yet these data are still rare. Very few practical radiation
sources are monoenergetic or even consist solely of one type of radiation, and
yet most Monte Carlo calculations start with just such a source. While the
limitations on source and geometry in the calculations are now being overcome,
this consideration often makes the interpretation of comparisons complex.

Another complicating factor is that certain experimentally measured quan-
tities are poor indicators of the overall accuracy of all the components of a
calculation; i.e., good agreement with experiment for some calculated quantity
does not verify the accuracy of the entire calculation. For example, conditions
of electron equilibrium in a photon beam imply that features such as absorbed
dose are often very insensitive to the electron transport part of the calculation.
Thus, examination of these dose values is a poor test of the electron transport
algorithm.

A further complication is that the various components of the particle trans-
port play much different roles in various materials or in different energy ranges.
For example, multiple scattering is much more important in high-Z materials,
and validation of a calculation in a material with one Z does not necessarily
imply that the code will work for the same calculation in a material with a very
different Z.
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In the following we present data against which electron-photon Monte Carlo
codes have been tested. Most of the comparisons we report have been done
with codes based on ETRAN or EGS. While these benchmarks prove that
these codes are generally quite accurate, it is our opinion that much more work
will be required before either code can be used routinely with confidence at the
level of a few percent. If this is true of these extensively used codes, it certainly
must apply even more strongly to less extensively used codes. Although Monte
Carlo techniques have an aura of being the only “right” approach to many
calculations in radiation dosimetry problems, a good rule of thumb is “user
beware. ”

III.C.1. Response Functions for Photon and Electron Detectors

Monte Carlo calculation of the response functions of photon or electron spec-
trometers, such as NaI or Si detectors, has a long history. Because of the
existence of high-quality experimental data, this is a good benchmark for cer-
tain aspects of the Monte Carlo technique. Both EGS and ETRAN have been
carefully studied in this context (see Rogers, 1982, 1984a; Berger et al., 1969;
Berger and Seltzer, 1972). For photon detectors, it has been shown that EGS
and ETRAN are in good agreement with each other except for small differences
between calculated escape peak efficiencies at higher energies (Rogers, 1982).
These differences are of no practical consequence but may reflect the more ac-
curate treatment of positron transport in EGS (see Section II,G,5). Figures 42
and 43 present comparisons with experimental data in which no normalization
parameters are introduced; i.e., the comparisons are absolute. For 662 keV γ
rays from a 137Cs source the agreement is excellent as long as the effects of the
beryllium β-ray shield between the source and the NaI detector are taken into
account. The backscatter from the wall behind the source leading to a peak at
∼250 keV and the low-energy characteristic x rays from the source (∼30 keV)
were not included in the model. In this case electron transport plays a negli-
gible role. As shown by Fig. 43, at 6.13 MeV the agreement with experiment
is excellent above 4 MeV. In this case the integrated counts above 4 MeV are
reproduced within the 2% uncertainty in the measurement. The inclusion of
electron transport has roughly a factor of 2 effect on the calculated number of
counts in the full energy peak. At lower energies in the response, the observed
effects of photons interacting in the room, in particular 511-keV annihilation
photons from the walls, are substantial but are not included in the calculation.
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Figure 42: Measured (histogram) and calculated (circles) response of a 3
x 3 in. NaI detector to an isotropic point source placed 10 cm away and
emitting 3.07 x 107 photons into 4π with energy 661 keV. The open circles
are for calculations with a bare detector and the filled circles include the
effects of a 1.18 g cm−2β absorber made of Be. [From Rogers (1982).]
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Figure 43: Absolute comparison of the calculated (histogram) and mea-
sured (symbols) of a 5×4 inch NaI to a known fluence of 6.13 MeV
photons with a 2% contaminant peak at 7.1 MeV.
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Monte Carlo calculations have also been shown to predict accurately the rela-
tive response functions of germanium detectors, although in this case absolute
predictions are less reliable because exact specification of the active region in
the detector is not possible (see Debertin and Grosswendt, 1982; Rogers, 1982).

While it is essential to include electron transport when calculating detector
response to high-energy photons, the calculations tend to be insensitive to the
details of electron transport. A much more severe test of an electron transport
code is the calculation of the response function of an electron detector. The
most severe test occurs for low-energy electron beams incident on detectors
through which some electrons penetrate. The Monte Carlo code must properly
calculate electron backscatter, electron transmission, and the bremsstrahlung
yield. Figure 44 compares measured and ETRAN-calculated response functions
for 500-keV electrons incident on Si detectors of different thicknesses (from
Berger et al., 1969). In general, the agreement is very good, although there is
some disagreement for detectors which have thicknesses between 10 and 60%
of the CSDA range of the electron. EGS has been shown to be in reasonable,
but not exact, agreement with the ETRAN calculations (Rogers, 1984a). In
particular, it has the same disagreements with experiment as does ETRAN for
thin detectors.

Such comparisons with measured detector response functions for electrons
represent a severe test of any Monte Carlo code and should be used to evaluate
any new code (for measured data, see also Varley et al., 1981; Damkjaer, 1982).

In summary, Monte Carlo codes such as EGS and ETRAN are capable of
accurately calculating detector response functions for photon detectors and for
electron detectors which are thicker than the CSDA range of the electrons
involved.

III.C.2. Photon Depth-Dose Curves

For medical and health physicists, photon depth-dose curves represent an im-
portant test of Monte Carlo codes because energy deposition in photon beams is
central to these fields. However, these curves are not sensitive tests of electron
transport, which plays only a minor role, except in the buildup region where
electron contamination of the beam often makes meaningful comparisons with
experiment impossible.

Figure 45 presents a comparison by Han et al. (1987) of an EGS calculation
and experiment for the depth-dose curve from a 10 x 10 cm2 60Co γ-ray beam.
The agreement is excellent. The calculations indicate that
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Figure 44: Comparisons of calculated and measured response functions
for pencil beams of 500-keV electrons incident normally on Si detectors
at different thicknesses Z. The response functions were calculated with
ETRAN for semi-infinite slabs and broadened using experimental data.
[From Berger et al. (1969b).]

scatter from the source capsule and collimators does not play a major
role, although in this case its inclusion makes agreement with experiment
slightly worse. In a similar vein, Fig. 28 showed a comparison between
an analytic and an EGS Monte Carlo calculation of the dose components
versus depth in a broad beam of 60Co γ rays. Again, the agreement was
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Figure 45: Comparison of measured and EGS-calculated TAR versus
depth (essentially 1/r2 corrected depth-dose) for a 10 x 10 cm2 60Coγ-ray
beam. [From Han et al. (1987).]

Figure 46: Comparison of measured and calculated TMR versus depth
(essentially 1/r2 corrected depth-dose) for the I5-MV photon beam from
a Clinac-20. Comparisons are given for a 10 x 10 cm2 beam on the central
axis and 12 cm off axis. The calculations, done with EGS, start from the
electron beam incident on a target with backing and include the effects
of the flattening filter and collimators. [From Mohan et al. (1985).]
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excellent although only the Monte Carlo calculation was capable of including
third-order and higher scattering components.

Mohan et al. (1985) have compared EGS-calculated photon depth-dose
curves with experimental data for bremsstrahlung from medical linear accel-
erators. The calculations modeled the generation of the bremsstrahlung beam
and the effects of collimators and beam-hardening filters. Several beam quali-
ties were investigated, from 4 to 24 MV. Figure 46 shows the I5-MV calculation
of the tissue maximum ratio (TMR) versus experiment. The agreement is ex-
cellent, particularly in the falloff region. The off-axis agreement indicates the
ability of the code to predict variations in beam quality across the beam. The
slight discrepancy in the buildup region was attributed to the presence of con-
taminant electrons in the incident photon beam.

Figure 47 compares calculated doses in the buildup region of a 60Co γ-ray
beam to the experimental data of Higgins et al. (1985), selected because they
eliminate the effects of contaminant electrons. The inclusion in
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Figure 47: A comparison of measured and calculated buildup region in a
60Co γ-ray beam with no electron contamination. Measurements are from
Higgins et al. (1985). Calculations were done with EGS for a monoen-
ergetic beam of 1.25-MeV photons with and without including photons
scattered from the source capsule. [From Rogers et al. (1988).]
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the EGS calculation of scattered photons from the source capsule makes a small
but distinct improvement in the agreement.

In summary, comparisons with experimental data show that Monte Carlo
calculations can accurately predict photon depth-dose curves in water-like ma-
terials over a wide energy range. While all the above comparisons refer to EGS
calculations, it has been shown that EGS is in reasonable agreement with other
Monte Carlo codes for photon depth-dose curves (Rogers, 1982), and in the
cases in which we have compared EGS and ETRAN (CYLTRAN) results, we
have obtained good agreement.

III.C.3. Absorbed Dose per Unit Incident Fluence of 7-MeV
Photons

The above comparisons to experimental depth-dose curves are relative; i.e., they
compare only the shapes of the curves. Absolute comparisons are difficult since,
if a photon source is sufficiently weak that individual photons can be counted, it
is also too weak to produce an accurately measurable signal in a dose-measuring
device. Mach and Rogers (1984) have reported a precise measurement with a
Baldwin-Farmer ion chamber placed at 5-cm depth in a water phantom irra-
diated by an absolutely known fluence of 7-MeV photons. The photon source
was generated using 2.7-MeV protons incident on a CaF2 target in an ultralight
target chamber (see Fig. 48). The 19F(p, αγ)160 reaction produces a triplet of
photons between 6 and 7 MeV plus some lower-energy photon contamination
(<10% of the dose). The experiment measures the charge from the ion chamber
per unit fluence of 7-MeV photons incident on the phantom with an accuracy
of ±1.6% (1σ). One can calculate the dose at 5-cm depth given the incident
photon fluence (note that the finite size of the phantom reduces the dose by
2.7% compared to the dose in a semi-infinite slab). One can also calculate the
absorbed dose from the measured charge and the exposure calibration factor
for the chamber using anyone of a number of dosimetry protocols [American
Association of Physicists and Medicine (AAPM), 1983; Nordic Association of
Clinical Physicists (NACP), 1980]. A major factor in these protocols is an ap-
propriate stopping-power ratio calculated using a Monte Carlo code (see, e.g.,
Andreo and Brahme, 1986). Thus, the measured charge and the calculated pho-
ton fluence lead to two estimates of the dose, which must agree if the Monte
Carlo calculations (and other aspects of the dosimetry protocol) are accurate.
Mach and Rogers found agreement well within the measurement uncertainties
of ±1.6% when using EGS to calculate the dose from the fluence and
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Figure 48: Experimental arrangement for measuring the absolute fluence
of nearly monoenergetic photons produced by the 19F(p, αγ)160 reaction
induced by 2.7-MeV protons incident on a 6 mg cm−2 target of CaF2

backed by 0.38 mm of Ag. At low beam current the 5 x-4 in. NaI
detector measured the ratio of the absolute fluence of 7-MeV photons at
39o to the beam axis per count in the 2 x 2 in. monitor detector. At high
beam current there is a measurable ion current (-70 fA) in the Baldwin-
Farmer ion chamber placed at 5-cm depth in a water phantom at SSD =
50 cm, also at 39o. From the measured ion chamber charge per count
in the monitor, one can deduce the ion chamber charge per unit fluence
of 7-MeV photons incident on the phantom. [From Mach and Rogers
(1984).]

either the AAPM (1983) or NACP (1980) protocols to calculate the dose from
the ion chamber measurement. For a proper consistency check, one should use
the same Monte Carlo code to calculate all the factors needed for the compar-
ison, but these are not yet available.

III.C.4. Bremsstrahlung Production

The production of bremsstrahlung plays an important role in many simulations.
Unfortunately, because of the difficulties in the measurements, not many high-
quality experimental data are available. This is also an area in which the models
used in various codes are often weak, resorting to empirical scaling factors or
simplifications. There has been considerable work in this area by Seltzer and
Berger (1986) and the most recent
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version of ETRAN (Seltzer, 1989) reflects these new data. The impact of this
work on other Monte Carlo codes has not yet been established. In this section we
discuss two types of data: (1) thick-target angular distribution data, which test
the total production cross section and the electron multiple-scattering model
(since the bremsstrahlung photons are given off in nearly the same direction
as the electrons which create them), and (2) bremsstrahlung energy spectra,
which are primarily a test of the cross sections, differential in energy, and of
the sampling routines. .

a. Angular Distribution Data. Wyckoff et al. (1971) have measured, with an
accuracy of +5 to 15% the absolute dose to polymethylmethacrylate (PMMA)
per unit charge of the electron beam incident on a thick tantalum radiator as
a function of depth in the PMMA and angle. Their data are compared in Fig.
49 with calculations using EGS (Ewart and Rogers, 1982). The simulation first
calculates the photon spectrum at each
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Figure 49: Comparison of calculations and experimental results for the
angular distribution of absorbed dose at 4.5 g cm−2 depth in a phantom at
100 cm, from 100-and 30-MeV e- beams incident on stopping thicknesses
of Ta. The calculated dip around 90o is due to the infinite lateral extent of
the slab in the calculations. The comparison is absolute. The calculated
results at 0o are high for the reasons discussed in the text. The calculated
dose is in tissue and that measured is for PMMA. [From Ewart and Rogers
(1982).]
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Figure 50: Absolute comparison of calculated (dashed) and experimental
(solid) results presented in NCRP Report No. 51 (1977) for the angular
distribution of absorbed dose at 4.5 g cm−2 depth in a phantom 100 cm
from 8-, 3-, and 2-MeV electrons incident on a stopping target of 5.79 g
cm−2 of W. The discontinuities at 90o are due to the finite thickness of
the target. [From Ewart and Rogers (1982).]

angle and then the dose at each depth in tissue, assuming a normally incident
broad beam of photons with that spectrum. This approximation leads to an
overestimate of the dose at forward angles, where the dose is sharply peaked.
Otherwise, the agreement is good. Wyckoff et al. showed that their data were in
good agreement with ETRAN calculations for the 30-MeV case. By implication,
the EGS and ETRAN results are in good agreement, although this contradicts
a result presented by Ford and Nelson (1978) which shows EGS with 50% less
energy intensity at back angles, compared with ETRAN, for 30-MeV electrons
on a thick tungsten target (their figure 3.3.2).

Figure 50 compares EGS calculations and the experimental data of Bly and
Burrill, as presented in National Council on Radiation Protection and Mea-
surements (NCRP) Report No. 51 (1977) for lower-energy electrons incident
on tungsten. The agreement is good at 8 MeV but the EGS
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calculations overestimate the forward bremsstrahlung production at low ener-
gies. As discussed in Section II,G,3, this shortcoming of EGS is significant for
problems which isolate the bremsstrahlung from low-energy electrons but is not
important in other situations.

b. Bremsstrahlung Energy Spectra. Berger and Seltzer (1970) and Ford and
Nelson (1978) have compared the results of ETRAN, EGS, respectively, to
some of the available bremsstrahlung spectral data. Generally the agreement is
reasonable, but there are discrepancies. Figure 51 presents an absolute compar-
ison of EGS and ETRAN results with some experimental data for electrons on
a composite target of tungsten and gold. The shapes are in reasonable accord,
although the EGS results are somewhat higher than those from ETRAN and
the experiment. This is an area which deserves more detailed work.

III.C.5. Electron Depth-Dose Curves

As the benchmarking of photon depth-dose curves tests the Monte Carlo trans-
port of photons, so does the comparison of experimentally measured and calcu-
lated electron depth-dose curves form an important criterion for the reliability
of electron transport modeling. Andreo and

Figure 51: Comparison of EGS (solid histogram) and ETRAN (dashed
histogram) calculations of bremsstrahlung spectra with the experimental
data (filled circles) of O’Dell et al. (1968),. for electrons incident on a
composite target of tungsten (0.490 g cm−2) followed by gold (0.245 g
cm−2), for a small detector near 0o. [From Ford and Nelson (1978).]
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Figure 52: Central-axis relative absorbed dose distributions calculated by
Andreo and Brahme (1984) (solid histogram) for a broad parallel beam
of 20-MeV electrons on water compared to the experimental results of
Harder and Schulz (1972) for 21.2-MeV electrons on PMMA (solid curve)
and those of Brahme and Svensson (1979) for 22.S-MeV electrons on
water (dashed line). The depth scale is given relative to Rp to facilitate
comparison among the different energies. [Based on data from Andreo
and Brahme (1984).]

Brahme (1984) have compared the Monte Carlo calculations of Andreo (1980)
with the experimental data of Harder and Schulz (1972) and Brahme and Svens-
son (1979). As depicted in Fig. 52, the calculation with the code of Andreo fits
the data excellently.

A careful study of electron depth-dose curves in water has been carried out
by Shortt et al. (1986), who measured and calculated the perturbation caused
by the placement of several “standard” heterogeneities in water. The hetero-
geneities studied were an air cylinder (1 cm in diameter, 2 cm in length) and
an aluminum cylinder (1 cm in diameter, 1 cm in length) placed on the central
axis at 2-mm or 2-cm depth and irradiated by 10-and 20-MeV electron beams.
Representative results are shown in Figs. 53 and 54. The only normalization
performed was for the homogeneous central-axis data in the peak region, and
all other measurements are relative to this. These and other comparisons by
Shortt et al. demonstrate that the EGS code can predict accurately the signif-
icant effects of these
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Figure 53: Depth-dose distributions obtained with 20-MeV electrons in-
cident on water with the “standard” air and aluminum heterogeneities
starting at a depth of 2 mm. The symbols represent the measured data as
follows: 0, homogeneous water phantom; x, 1-cm-long aluminum cylin-
der; ∆, 2-cm-long air cylinder. The histograms are the results of EGS4
Monte Carlo calculations for a monoenergetic point source of 20-MeV
electrons. The arrows show the depths at which radial profiles are pre-
sented in the next figure. The vertical axis shows absorbed dose to water
per unit incident fluence of 20-MeV electrons. The experimental data are
all normalized to one point on the curve for water. The measurements
have a precision of about ±1% while the statistical accuracy of the Monte
Carlo results is about ±2% [From Shortt el al. (1986).]

heterogeneities. However, there were some discrepancies in the depth-dose
curves in a homogeneous medium, especially at 10 MeV. We find that by doing
a full simulation which accounts for scattering in the titanium exit window of
the accelerator, the lead scattering foil, and the air, the calculated and mea-
sured data agree within 3% of the maximum dose over the entire curve (see
Fig. 55).

This example demonstrates how sensitive comparisons between theory and
experiment are to the details of the experiment. With this in mind, Figs. 56-
59 compare experimental depth-dose curves in a variety of materials to those
calculated using EGS4 with PRESTA and using
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CYLTRAN (ITS.V1). The experimental data from Lockwood et al. (1980)
are absolute, whereas the experimental data taken from the compilation pre-
sented in Berger and Seltzer (1973) appear to have been arbitrarily normalized
(and we have kept that normalization). There are several interesting features
in these comparisons. Perhaps the most important concern is that the experi-
mental data are scattered as much as the discrepancies between the codes and
hence no strong preferences can be drawn. Both codes reproduce the data well.
Figure 56, for 1-MeV electrons on beryllium, appears to exhibit the differences
between EGS and ETRAN which have been ascribed to the error in ETRAN’s
energy-loss straggling distribution (see Section II,G,1). The fact that the EGS
and ETRAN results are in closer agreement for 1-MeV electrons on copper or
10-MeV electrons on lead (Figs. 57 and 59) is at first sight somewhat sur-
prising because the error in the energy-loss straggling algorithm also affects
these materials (although the size of effect is a complicated function of energy,
atomic number Z, and step size). However, Fig. 40 indicated that the multiple
scattering formalisms cause differences in lead

Figure 54: Radial dose profiles for 20-MeV electron beams incident on
water with an air cylinder (2cm long, 1 cm diameter) starting at a depth
of 2 mm. The symbols represent the measured data and the histograms
are the Monte Carlo results. [From Shortt et al. (1986).]
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Figure 55: Comparison of central-axis depth-dose curves in water as mea-
sured (stars) by Shortt et al(1986) and as calculated using EGS4 with
PRESTA. The calculations showed by the diamonds were done for mo-
noenergetic point sources with energies equal to the mean energy of the
experimental beam at the phantom surface (10 and 20 MeV). The calcu-
lations shown by the boxes start with accelerator beams with energies of
10.56 and 20.84 MeV and explicitly model the influence of the titanium
exit window, the lead scattering foil, and the air.
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Figure 56: Broad parallel beam of 1-MeV electrons incident normally
on beryllium. The solid histogram is calculate using CYLTRAN(ITS Ver-
sion 1). The dashed histogram is calculated using EGS4 with PRESTA.
The absolute experimental data of Lockwood et al. (1980) are shown as
open diamonds and other experimental data, taken from a compilation by
Berger and Seltzer (1973), are shown as stars.

which are exactly opposite to the energy-loss straggling differences and hence
the two effects appear to cancel. In the higher-Z materials, energy-loss strag-
gling due to the creation of knock-on electrons may play a smaller role because
of the increased radiative energy loss and multiple scattering. The transport
of low-energy electrons in high-Z materials represents the most difficult case
to simulate, and it is not too surprising that significant differences are seen in
Fig. 58 for 1-MeV electrons on uranium. These unexplained differences deserve
further study.

III.C.6. Ion Chamber Response to 60Co γ-Rays

The response of an ion chamber in a 60Co γ-ray field is well understood and
forms the basis of primary exposure standards for 60Co (see, for
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Figure 57: Same as in previous figure except for 1-MeV electrons incident
on copper. The open triangles are additional data taken from Berger and
Seltzer (1973).

Figure 58: Same as previous figure but for 1-MeV electrons incident on
uranium.
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Figure 59: Same as the previous figure but for 10-MeV electrons incident
on lead.

example, Attix, 1986). The response per unit photon fluence, after a usually
small correction for attenuation and scatter in the chamber walls, is indepen-
dent of the geometric shape of the detector, and its absolute value is given by
cavity theory (Bielajew, 1986a). Calculation of the response of an ion cham-
ber provides a very stringent test of the accuracy of a Monte Carlo code. As
shown above in the discussion of step size effects (see Fig. 27) and in several
detailed papers (Bielajew et al., 1985; Rogers et al., 1985a), EGS is capable of
predicting the response of a carbon-walled ion chamber in a 60Co γ-ray beam
to within a 1% statistical uncertainty. We have found that this calculation is a
very sensitive test of the electron transport algorithm in the EGS code.

However, the interpretation is more complex. One can get accurate results
by deliberately simplifying the transport model, i.e., by making the simulation
less realistic. Inaccuracies of one type can often be compensated for by errors
of another sort. In Fig. 27 the importance of including lateral displacements
during the course of a large electron step was demonstrated, and Fig. 24 shows
that corrections for path length curvature are essential for accurate electron
simulation if large steps are being used.

Yet, as shown in Fig. 60, ignoring both these factors (stars) recovers the
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Figure 60: Ion chamber response normalized to the response predicted by
cavity theory plotted against ESTEPE, the maximum fractional electron
energy loss per electron step used in the calculation. The response is for
a pancake ion chamber with minimal full buildup walls of graphite subject
to 60Co photons incident perpendicularly on the fiat face. The cavity was
1 cm in radius and 2 mm in depth. The stars are results of calculations
that neglect path length curvature corrections. The open boxes neglect
multiple scattering as well. The “kerma” calculation neglects all electron
transport.

correct calculated ion chamber response and gives a step size-independent result
(to within 2% despite errors of up to 30% in each step! One may conclude
that under electron equilibrium conditions the calculated results may be very
insensitive to certain details of the electron transport.

To emphasize this point further, we have included a calculation in Fig. 60
(boxes) in which multiple scattering is not modeled. The electrons merely
travel in straight lines, depositing energy along their original direction of motion
after the interaction which set them in motion. Again, the correct result is
obtained with no evidence of a significant step size artifact. Indeed, for this
particular example, one does not need to do any electron transport to calculate
the correct result. This is shown by the point labeled “kerma” in Fig. 60.
In this calculation, all the electron energy is deposited at the point where the
electron is created.
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To summarize, the prediction of ion chamber response is an important bench-
mark calculation for any Monte Carlo code to be used for radiation dosimetry.
The situation of charged-particle quasi-equilibrium in the vicinity of a small air
cavity embedded in a solid medium poses a severe challenge to general-purpose
Monte Carlo codes. We have seen in Section II,C that this problem is prone to
step size artifacts that can be reduced by including path length curvature and
lateral displacement in the electron transport modeling or by reducing electron
step size. Special-purpose codes can be constructed that are able to calculate
efficiently a correct response in certain special cases. Incomplete electron trans-
port methods can still yield correct results. Therefore, it is advisable to use
this as only one benchmark of a Monte Carlo code, with other benchmarks to
test the code in extreme non-equilibrium cases.

III.C.7. Dose at an Interface

It is essential that a Monte Carlo code for radiation dosimetry applications be
able to calculate dose in the vicinity of an interface between two media. The
ion chamber, discussed in Section III,C,6, is a special case of an interface sub-
ject to an electron fluence in quasi-equilibrium. In radiotherapy applications,
knowledge of dose deposition near bone-tissue, tissue-lung, and metal-tissue
interfaces is critical to accurate treatment planning. Measurements near inter-
faces between high-Z and low-Z materials provide an excellent test of Monte
Carlo codes and extensive calculational and experimental studies of interface
dose deposition have been carried out.

Eisen et al. (1972) measured dose deposition near interfaces with a dye
film dosimeter. They compared their results with calculations made using the
ZEBRA code (Buxton, 1971) or ETRAN (Berger et al., 1971). However, here we
present new results calculated with CYLTRAN (ITS, version 1) and EGS4 with
the PRESTA electron transport algorithm (Bielajew and Rogers, 1986a, 1987).
A typical example, the dose to aluminum and to gold at each side of an interface
irradiated by normally incident 2MeV electrons, is shown in Fig. 61. Given the
scatter of the experimental data, both calculated results match the experiment
acceptably well. The EGS calculation exhibits less backscatter from the gold.
Another comparison, of the dose to a Cu foil with a polystyrene backing, is
presented in Fig. 62. CYLTRAN and EGS4 (PRESTA) yield similar results
and both exceed the experimental data in the polystyrene. This discrepancy
has not been explained.

Another extensive study has been carried out by Lockwood et al. (1980),
who used a calorimetric technique to measure, per unit incident
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Figure 61: Comparison of Monte Carlo calculated and replicate measured
doses in aluminum followed by gold irradiated by a broad beam of normally
incident 2.0-MeV electrons. The measurements were performed using a
dye-film dosimeter (Eisen et al., 1972).

Figure 62: Comparison of Monte Carlo calculated and replicate measured
doses in copper followed by polystyrene irradiated by a broad beam of
normally incident 2.0-MeV electrons. The measurements were performed
using a dye-film dosimeter (Eisen et al., 1972).



5. TECHNIQUES OF ELECTRON AND PHOTON TRANSPORT 519

Figure 63: Comparison of Monte Carlo calculated and measured absolute
doses per unit incident fluence in beryllium-gold-beryllium irradiated by
a broad beam of normally incident 1.0 MeV electrons (Lockwood et al,
1980). The measurements were performed using a calorimetric technique.
Depth scale is given as a fraction of the mean range for 1 MeV electrons
in each material.

fluence, the absolute dose deposition across interfaces of various compositions.
They compared their experimental results with calculations using the ETRAN-
based code TIGER (Halbleib and Vandevender, 1975). In general, they ob-
tained good agreement between the measurements and calculations. Figure
63 shows the doses for beryllium-gold-beryllium interfaces. In this case there
appear to be significant discrepancies between the calculated and measured
doses in the downstream beryllium slab, reminiscent of the discrepancy for the
Cu-polystyrene interface in Fig. 62. However, both codes accurately predict
the large fraction of the dose in the upstream beryllium slab which is from
electrons backscattered from the gold. Both codes also accurately predict the
significant decrease in the dose at the back of the gold slab because of the lack
of backscatter from the beryllium.

Another benchmark for Monte Carlo calculations is a comparison of dose
profiles in thermoluminescent dosimetry (TLD) material, sandwiched
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between lead plates and exposed to 60Co γ rays. The experiments were reported
by Ogunleye et al. (1980) and the results are shown in Fig. 64. The EGS4
calculations were done with the PRESTA algorithm. In the experiment and cal-
culations, an LiF detector 0.266 cm thick was placed between full buildup walls
of Pb (0.0441 cm was used in the calculations). The standard EGS4 (PRESTA)
results were obtained using monoenergetic 1.25-MeV photons. They fit the data
excellently except near the back wall, possibly due to an underestimate by EGS
of the backscatter from the Pb walls. A more accurate calculation, with the
photoelectron angular distribution sampled correctly, demonstrates little im-
provement. An analogous calculation using CYLTRAN gave similar results
(not shown), except the agreement was slightly worse on the front face but
slightly improved at the back face. A calculation utilizing a realistic 60Co pho-
ton spectrum shows some improvement. This agrees with the work of

Figure 64: Comparison of measured LiF response to 60Co γ rays (stars)
(Ogunleye et al., 1980) with various EGS (PRESTA) calculations: (solid)
EGS4 (PRESTA); (short dash) including more accurate photoelectron an-
gular distributions, (long dash) full 60Co spectrum (from Bielajew and
Rogers, 1986c,d). The experimental data are arbitrarily normalized in
the middle. Ideally, the experimental results would be the average of the
adjacent calculated results.
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Garth et al. (1980), who showed that scattered photons can play a significant
role in interface energy deposition.

III.C.8. Stopping-Power Ratios

Perhaps the most important role of Monte Carlo techniques in radiation dosime-
try is the calculation of stopping-power ratios. These are needed in cavity
theory to convert charge measurements from radiation detectors, such as ion
chambers, into estimates of the absorbed dose in the medium (see, e.g., ICRU,
1984a; Nahum, 1978; Andreo and Brahme, 1986). Determination of Spencer-
Attix stopping-power ratios entails calculating the electron fluence spectrum at
the point of interest in a phantom and then calculating the ratio of stopping
powers in two media, averaged over the electron spectrum (see ICRU 35 for a
discussion of the details). The calculation is very sensitive, varying by up to
2% to the choice of stopping powers used for the spectrum averages. Its only
somewhat sensitive to the details of the Monte Carlo calculation of the elec-
tron spectrum. For example, Nahum (1978) showed that the stopping-power
ratio for 20-MeV or lower-energy electron beams was wrong by at most 3%
if calculated for the mean energy of the beam at depth, as given by a simple
formula. Thus, any comparison with experimental data is not a very sensi-
tive test of the Monte Carlo calculated electron fluence spectra. Furthermore,
the experimental data are hard to obtain. Figure 65 presents a comparison
of graphite-to-air stopping-power ratios, as measured by Domen and Lamperti
(1976) using a graphite calorimeter and graphite ionization chamber and as
calculated by Berger for ICRU 35 using ∆ = 10 keV, ρ = 2.25 g cm−3, and the
Sternheimer and Peierls (1971) prescription for the density effect. Except at
very large depths, agreement between theory and experiment is always better
than 1 % and on average much better than this. However, both experimental
problems and calculational uncertainties imply that such close agreement may
be fortuitous. For example, no account was taken of gap effects in the calorime-
ter, reported as ±0.7% in ICRU (1984a), and the best value of (W/e)air has
changed by 0.4%.7 Similarly, best estimates of the density effect in carbon have
changed (ICRU, 1984b) and the choice of carbon density to use in calculating
the density effect is an open question which causes an uncertainty of up to
1 % Comparisons of measured water-to-air stopping power ratios are even more
fraught with uncertainties (see ICRU, 1984a). In short, experimental verifica-
tion of calculated stopping-power ratios is not sensitive to the quality of the
Monte Carlo calculations.

72011 work suggests even greater changes are needed in (W/e)air: Thomson and
Rogers, PMB 55(2010)3577
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Figure 65: Comparison of experimental (symbols) and calculated (curves)
graphite-to-air stopping-power ratios as a function of depth in a graphite
phantom for incident electron beams of different energy. The experimen-
tal results are by Domen and Lamperti(1976) and calculations are those
reported by ICRU 35 (1984a) as by Berger. [From Nahum (1983).]

IV. Variance Reduction Techniques

IV.A. INTRODUCTION

In this section we briefly survey some of the techniques available to improve the
efficiency of Monte Carlo calculations. Realistic calculations can take hundreds
of hours of CPU time; hence improved calculating efficiency is desirable.

In electron-photon Monte Carlo transport, most of the CPU time is spent
generating random numbers, rotating coordinate frames, sampling the multiple-
scattering angle, and tracing through the geometry. Efficient coding and struc-
ture in a Monte Carlo code can save a large amount of computing time. For
example, a subroutine call requires considerable overhead, and for short proce-
dures, such as generating random numbers, one can speed up a Monte Carlo
code considerably by computing the random numbers in line (see Section II,E).
Similarly, one can speed up calculations by doing table lookups on frequently
used functions (e.g., EGS does table lookups for all sines and cosines) and one
can improve the
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efficiency of sampling procedures for physical processes. In contrast, variance
reduction techniques can improve the efficiency by giving more emphasis to the
physical quantities of interest, thus producing more relevant information for a
given amount of CPU time. These techniques are the subject of this section.

Consider a shielding problem in which, on average, only one photon in a
thousand gets through the shield. One could change the cross section so that
for every 1000 histories, 10 photons would get through the shield. This would
improve the efficiency, since the fractional uncertainty in the number of photons
getting through the shield would be reduced from ±100% (1 ±

√
1) to ±32% (10

±
√
10). To make the technique work, one must also have a procedure which tells

exactly how the change in cross section has changed the overall probability of the
event so that a “fair game” is maintained. In this case, one would have to know
that the changes of the cross section increased the probability of transmission
by 10, and hence the answer becomes 1.0 ± 0.3. In the general case, a fair game
is maintained by associating a weight with each particle which corresponds to
the relative probability that the history being followed would actually occur.
In an analog calculation, where no variance reduction techniques are used, the
weight is always 1.0, whereas in the shielding example it would be 0.10. In the
scoring routines, the particle weight, i.e., the relative probability of this event,
is scored rather than the actual number of particles.

There are various straightforward “biasing techniques” which can dramati-
cally improve computing efficiency. Considerable effort has gone into developing
a rigorous foundation for these and other variance reduction techniques, such as
using statistical estimators, especially as applied to neutron and photon trans-
port problems. In what follows we present a brief sketch of some techniques
which can be used effectively in electron-photon simulations. Various reports
and books contain more extensive and rigorous treatments (see, in particular,
McGrath and Irving, 1975, and the annotated bibliography therein; also Ham-
mersley and Handscomb, 1964; Alm Carlsson, 1981; Lund, 1981; Stevens, 1980;
Kahn, 1956). One particularly exciting possibility which has not yet been exten-
sively exploited is the development of adjoint Monte Carlo transport methods
for electrons as reported by Jordan (1986).

IV.B. EXPONENTIAL TRANSFORMATION OF PHOTON

PATH LENGTH AND FORCED INTERACTIONS

Although these techniques apply only to the photon component of an electron-
photon simulation, we have found them very useful, even for problems involving
electron transport.
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When calculating photon depth-dose curves, one is frequently interested in
detailed information in the buildup region. The exponential transformation
of photon path lengths can be used to bias the sampling procedure to give
more photon interactions in this region and thus improve the efficiency for dose
calculation there, while potentially making it worse deeper in the phantom
where relatively fewer photons now interact. To implement this method, define
η to be the number of mean free paths to the next photon interaction. Then
let

η = −B lnRi (13)

with
B = 1/(1− C cos θ) (14)

where C is a user-defined variable, Ri a random number uniformly distributed
between 0 and 1, and θ the angle of the photon with respect to the direction
of interest (the depth axis for a depth-dose curve). Recall that in the analog
calculation η = lnRi (see Section II,A,4), which is recovered for C = 0. For
values of C < 0, B is < 1 for forward-going photons and hence the point of
the first interaction is closer to the surface. For 0 < C < 1 the path length is
stretched in the forward direction, which is useful in shielding problems. This
equation for B is derived, based on the underlying theory, so that a fair game
is maintained by adjusting the weight W to become W ′, given by

W ′ = WBe−η C cos θ (15)

Note that the new weight W’ depends on η, the number of mean free paths
actually selected. In the C < 0 case, the weight decreases in regions where the
number of photon interactions has increased (η < − ln(1−C)/C for cos θ = 1 )
and increases elsewhere. When applying this technique, the energy deposited is
scored as the physical energy deposited times the weight of the particle. Table
II compares the relative efficiency for calculating the dose in different depth
bins for a 7-MeV photon beam incident on a water slab. As −C increases, the
efficiency for calculating the dose near the surface improves by a factor of 3
compared with the unbiased case, despite the fact that the computing time per
history goes up by a factor of 2. Note that the efficiency for calculating the
dose at depth gets worse at large values of −C because fewer photons get to
those depths (although for C = −1, the efficiency improves because this causes
more photons to interact in the phantom, σ−1

tot = 39 cm). The optimal choice
of
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Table 2:
Relative efficiency versus the parameter C of exponential transformation
biasing for calculation of the dose at various depths in water irradiated by

7-MeV photonsa

Relative efficiency of calculated dose Histories

C 0-0.25 cm 6-7 cm 10–30 cm 103

0 (1) (1) (1) 100
-1 1 1 4 70
-3 1.4 1.2 0.6 55
-6 2.7 2.8 0.07 50
a Biasing was applied on only the first photon in-
teraction. The relative efficiency is given by the
inverse of the square of the uncertainty in doses
for a series of calculations which all took the same
CPU time T (see Section III.B,3).

parameter is very problem dependent. We have used C = −6 for studying dose
buildup curves (Rogers and Bielajew, 1985). In general, one should prevent
particles from having too large a weight, since otherwise these rare cases can
occasionally lead to an increase in the variance.

A second, very useful, technique is to force photons to interact within the
geometry of interest. In this case, select the number of mean free paths to the
next interaction using:

η = − ln[1−Ri(1− e−X)] (16)

where X is the maximum number of mean free paths the photon can travel in
its current direction within the geometry. This samples η in the range 0 to X
rather than 0 to ∞ as in the analog calculation. However, the distribution of
interactions does not change and the weight is reduced by a constant given by
the probability that the particle would interact:

W ′ = W (1− e−X) (17)

This technique is very easy to implement as long as one can determine X, which
in general can be difficult. The structure of EGS permits a procedure for finding
X in any geometry (see Rogers and Bielajew, 1984; the relevant coding is on
the EGS4 distribution tape).

The improvements obtained using this technique are very problem dependent.
Its use is essential when almost all photons would pass through the geometry of
interest without interacting. For example, in calculating the dose on the surface
of a phantom from electrons generated by 60Co γ-ray interactions in 100 cm
of air, one improves the efficiency by a factor of 7
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by forcing the photons to interact in the air. Similarly, the efficiency in calculat-
ing the ion chamber response to 60Co γ rays improves by 60% when interactions
are forced to occur and by much more than that when calculating the contribu-
tion to the response from photons interacting twice in the chamber (Bielajew
et al., 1985).

The above two techniques have been singled out because they are especially
useful in a variety of problems which involve electron as well as photon trans-
port. Many other variance reduction techniques have been developed for pho-
ton transport (e.g., splitting, Russian roulette, correlated sampling, systematic
sampling, and statistical estimation). The reader is referred to the general ref-
erences given in the previous section and, on the use of statistical estimators in
medical physics, to Persliden and Aim Carlsson (1986) or Williamson (1987).

IV.C. ENHANCED CROSS SECTIONS

The calculation of a bremsstrahlung spectrum can be very time-consuming
because each slowing electron gives off relatively few photons. The details
of the electron trajectory play only a small role in determining the spectrum
compared with the more important features, namely the relative number of
photons generated at each electron energy and the photon attenuation and
scatter in the system. One can reduce the variance of the calculated spectrum
by artificially enhancing the number of bremsstrahlung photons produced and
reducing their weight by the corresponding factor. This is a standard option
of the ETRAN-based codes (Berger and Seltzer, 1973). ETRAN has a similar
option to enhance the production of characteristic x rays. It is relatively simple
to implement such procedures in ETRAN because steps are not interrupted by
the production of secondaries. By disregarding the energy loss of the electron
due to the extra bremsstrahlung events, its history remains properly described.

IV.D. RANGE REJECTION OF ELECTRONS

We have discussed several standard variance reduction techniques which mod-
ify the transport simulation and maintain a fair game by altering a particle’s
weight. We now tum to a variety of techniques which are less sophisticated but
useful.

Range rejection of electrons means that one ceases to track an electron once
its residual range is smaller than the distance to the nearest boundary
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or to the region of interest in the problem. This technique can save a great deal
of CPU time in energy deposition problems involving relatively large regions.
However, it introduces one approximation by ignoring the possibility that the
electron produces a photon which could then escape from the current region.
For this reason, it is usual to introduce a high-energy limit for its application.

When calculating the response of an ion chamber in a 60Co γ-ray beam, this
technique improves the calculational efficiency by a factor of 4 because a large
fraction of the electrons generated in the walls of the chamber are unable to
reach the gas cavity and hence nothing would be gained by taking the time to
simulate their tracks (Bielajew et al., 1985).

IV.E. USE OF PRECOMPUTED RESULTS

A general rule in Monte Carlo simulations is always to use as much prior infor-
mation as possible. One approach is to use precomputed results to speed up
part of the calculation. We have used this idea in two different ways.

One example comes from a study of the effects of scatter in a 60Co therapy
unit (Rogers et al., 1985b, 1988). To simulate the radiation transport within
the 60Co capsule took roughly 24 h of VAX CPU time. Rather than repeating
these 24 h in each of the hundreds of runs we did in the study, we stored the
phase space parameters of roughly 2 million particles as they left the capsule
and entered the beam collimator system. Different random number sequences
were used each time this data file was accessed, to reduce correlation of results.

Another aspect of the same project was to calculate the dose, as a function
of depth, due to contaminant electrons from the 60Co unit and the intervening
air. Rather than track the particles in a tissue phantom and score the dose, the
particle spectra were stored at the phantom surface. When adequate spectra
ϕ(E) were obtained, the dose D, as a function of depth d, was calculated using
previously calculated fluence-to-dose conversion factors, KE(d) from Rogers
(1984b) and Rogers and Bielajew (1985), i.e.,

D(d) =

∫ Emax

0
ϕ(E)KE(d)dE (18)

This technique gains well over an order of magnitude in computing efficiency
because each KE array represents a long calculation. However, two approxima-
tions are introduced because the KE values are for broad
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beams with normal incidence. For situations in which the real beams are
“broad,” the first approximation can be quite accurate, although for narrow
photon beams it can cause 10-50% overestimates of the peak dose, and for
narrow electron beams it can be totally wrong. The approximation of normal
incidence can be poor for low-energy electrons (≤ a few hundred keV) but is
often quite accurate for higher-energy electrons if the geometry is appropriate.

V. Computing Requirements

V.A. INTRODUCTION

Monte Carlo transport calculations can use large amounts of CPU time. The
steady decrease in the costs of computing time is one of the major reasons for
the current surge of interest in this technique. We finish this review by giving
some idea of typical computing times required. Most of our timings will be
given for calculations done in single precision on a VAX 11/780 with a floating-
point accelerator. Although this machine originally cost over $500,000, roughly
equivalent computing power is available today (1988) on a personal computer
which costs about $10,000.

As a rule of thumb, energy deposition problems take an order of magnitude
longer for photon beams than for electron beams. This is because the electron
beam problems frequently involve much smaller volumes with a much higher
density of particle histories of a similar nature, thus reducing the variations
from one history to another.

The calculation of depth-dose curves for broad parallel beams of electrons and
photons illustrates this rule of thumb. For uncertainties of ± 1 % (one standard
deviation) at the peak of the depth-dose curves, EGS required between 600 and
2600 s of VAX11/780 CPU time for incident electrons with energies between 1
and 10 MeV and 10,000-40,000 s for photons of the same energies. The timings
are highly dependent on the exact values of various transport parameters, but
these were chosen to be as fast as possible while giving the necessary ,accuracy
(see Rogers, 1984b).

As another example, the calculation of Awall the wall attenuation and scatter
correction factors for ion chambers in 60Co γ-ray beams takes 3-5 h of CPU
time using EGS to get an uncertainty of ±0.2% whereas it can take over 100 h
of CPU time to get ± 1 % uncertainty on the calculated γ-ray response of the
same chamber (Bielajew et al., 1985). This is because, in general, it is faster
to calculate a ratio such as Awall and because, as a ratio, it does not require as
accurate electron transport and hence larger step sizes can be used.
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A final example concerns the calculation of energy deposition kernels for
monoenergetic photons. This project involved determining where the energy
is deposited relative to a photon’s primary interaction site for use in convo-
lution dose planning (Mackie et al., 1988). The calculations for 23 different
photon energies required over 4000 h of VAX11/780 CPU time (not counting
the reruns!).

V.B. A TREATMENT-PLANNING EXAMPLE

The one-or two-dimensional nature of the examples described above is typical of
many kinds of problems approached using Monte Carlo techniques. To answer
the question of whether Monte Carlo calculations can ever be directly useful for
radiotherapy treatment planning, we must examine a fully three-dimensional
problem. Since the computing time is critically dependent on many variables,
as we specify various parameters we will briefly mention the effects of changing
them.

The following problem simulates doing a treatment plan for a monoenergetic
20-MeV electron beam incident on a patient. Lower-energy beams would require
less time to obtain a given accuracy since the electrons would spread out over
a smaller volume .

The beam is assumed to be uniform, parallel, and perpendicularly incident.
These parameters of the beam have no effect on the length of time required for
the simulation and were introduced only for ease in coding the sample problem.
It would take the same amount of time to simulate the dose deposition pattern
produced by a completely realistic beam from a therapy machine including
effects of scatter from the air, flattening filters, beam collimators, applicators,
etc.

The variance on the calculated dose (σ2; see Section III,B,3) is roughly in-
versely proportional to the fluence of incident particles (Le., the number per
unit area). This fluence is proportional to the total number of histories (and
thus computing time) per unit area of the beam. For a given variance of the
computed dose, the calculation time is thus proportional to the incident beam
area.

The patient is simulated by a 19-cm3 phantom with 1-cm3 voxels everywhere
except in the 1-cm2 central region, which has sixteen 2.5-mm2 voxels that are
1 cm thick except at the peak of the depth-dose curve, where there are four
voxels, each 2.5 mm thick. The computing time is dependent on voxel size.in a
variety of ways. The statistical fluctuations in energy deposition are dependent
on the number of particles contributing. Near the surface, where most electrons
are going in the direction of the beam, this means that computing efficiency is
proportional to the X-Y
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area of the voxel (depth defined in the Z direction), whereas at depth, where
tracks are more isotropic, the efficiency is more related to the voxel volume. The
voxel size also affects electron step sizes, since the more boundaries there are, the
more often steps are interrupted and the longer the calculation becomes (Biela-
jew and Rogers, 1986a, 1987). Voxel size can also affect calculation speed since
the storage space required can become so great that arrays must be swapped in
and out of core. In the example, the fairly coarse grid has 10,649 voxels, which
requires 125,000 words of storage for just the main scoring arrays. A resolution
of 2.5 mm everywhere would require over 5 × 106 storage locations. Further-
more, as the voxel size becomes smaller, electrons must be tracked to lower
energies so that artifacts are not introduced. For example, the CSDA range of
a 500-keV electron in water is about 0.018 kg m−2 (1.8 mm at unit density),
whereas it is about 0.044 kg m−2 for a 1-MeV electron. Thus, for 1-cm3 voxels
a cutoff of ECUT = 1 MeV is usually acceptable, whereas for 2.5-mm3 vox-
els 500 keV or less is needed. For electron transport simulations in which not
many knock-on electrons are created and in which. roughly a constant fraction
of the energy is lost in each electron step [i.e., Ei = Ei−1(1− ESTEPE)], the
calculation time varies as

T ∝ ln(E0/ECUT )

ESTEPE
(19)

Hence, using a value of ECUT = 1 MeV instead of 500 keV will reduce com-
puting time by about 20% for a 20-MeV beam.

In the example, every other layer of voxels is assumed to be a different ma-
terial, and the density of every voxel has been changed from the density in the
input data file. This realistically models the use of patient CT data. Since a
curved surface can be simulated using air-filled voxels, the fact that the “pa-
tient” has a flat surface has no effect on the computing time, except in the
sense that smaller voxel sizes might be necessary to simulate a curved surface
accurately.

In the sample calculation we used EGS4 and set ESTEPE = 0.04 since this
should provide reasonably accurate results. However, for details of dose de-
position near sharp inhomogeneities, a somewhat smaller ESTEPE would be
necessary, especially if smaller voxels were used. This would have a dramatic
effect on timing since it is inversely proportional to ESTEPE. If the calcula-
tion were done using the PRESTA algorithm, we would not expect a dramatic
change in computing time for the base case, but for smaller voxels and higher
accuracy PRESTA would reduce computing time, compared to the pure EGS4
calculation, by up to a factor of 2 (Bielajew and Rogers, 1986a, 1987).
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In the example we use ECUT = 500 keV with AE = 189 keV to ensure
adequate energy-loss straggling. A higher value of AE may be acceptable but
would not change the time significantly.

Calculation for 105 incident electrons took 5.1 h of VAX11/780 CPU time
in the sample problem and produced an uncertainty (1σ) of ±11% at the peak
of the depth-dose curve in the 2.5-mm3 voxels and +4% in nearby voxels with
dimensions of 1 cm2 x 2.5 mm. If an accuracy of ±2% of the peak dose is
required for treatment-planning purposes, holding 2T constant implies that
154 h of CPU time is required for the small-voxel case or 20 h to obtain the
same accuracy in the larger voxels. These times would increase by a factor of
4 for an accuracy of ±1 %

These values are clearly unacceptable for routine treatment-planning calcu-
lations. We have also timed the EGS code on two much faster machines. On a
IBM 3090 mainframe (currently the fastest IBM serial machine), the EGS code
runs 22 times faster than on the VAX 11/780. Similarly, on an FPS 264 at-
tached processor, the code runs 11 times faster than on the VAX. This reduces
the CPU time for the +2% calculation to 7 h for the IBM 3090 and 14 h for
the FPS 264 for the small-voxel problems or 54 min and 2 h, respectively, for
the large-voxel case. These figures are beginning to sound feasible for special
cases in treatment planning, although much effort is still required to provide
realistic input beam parameters.

All these calculations have been for electron beams. The calculations for
photon beams generally take 10 times longer, although the requirements for
resolution may be less important because perturbations by voids and bones are
not nearly as dramatic as they are in the electron beam case.

Future computers should dramatically decrease the computing time and cost.
Monte Carlo transport calculations are ideally suited to parallel processing,
since each history can be treated independently. Thus, we can expect consid-
erable increase in throughput from these kinds of developments, even if we do
not see any dramatic breakthroughs in computing technology such as the use
of high-Tc superconductors for ultrafast machines.

VI. Conclusions

We hope that this chapter has demonstrated that Monte Carlo techniques for
simulating electron and photon transport have attained considerable sophistica-
tion and accuracy. They have been used in a wide variety of radiation dosimetry
and other applications and their use can be expected

to increase as the cost of computing continues to decrease and as the software
available increases. In view of the large amount of effort invested in the two
currently available code systems, it seems advisable that most future effort
should be based on these systems. This does not mean that they are perfect;
on the contrary, more work is needed to improve them, to explain the various
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discrepancies with experiment that we have noted, and to do careful benchmark
comparisons for other situations.

Despite our belief that new users should make use of existing software tech-
nology, an underlying theme of this chapter has been that users must have a
good understanding of what the code is doing so they can ensure that both
they and the codes are doing appropriate and accurate simulations. Under
those circumstances, Monte Carlo simulation is a powerful and versatile tool
for radiation dosimetry.

VII. Appendix A: Calculational Models

In this report, NRCC calculations with CYLTRAN (CYLindrical TRANsport)
were done with the VAX double-precision version of CYLTRAN, which is part
of the Sandia Laboratories ITS (version 1) series (Integrated Tiger Series; Hal-
bleib and Melhorn, 1984). Aside from minor I/O changes, the only substantive
change was to switch to the inline random number generator used in EGS4. By
avoiding the subroutine call, this change was found to save about 15% on the
CPU time. CYLTRAN contains standard options to turn off straggling and
knock-on electron production. Documentation is given in Halbleib and Mel-
horn (1984) and the ETRAN documentation (Berger and Seltzer, 1973) and
CYLTRAN documentation (Halbleib and Vandevender, 1976b).

NRCC calculations with EGS were done with EGS4 (or equivalent). See
the documentation in Nelson et al. (1985). It is not a standard option in
EGS to do CSDA calculations, and these have been done by modifying the
data preparation program (PEGS4) to produce unrestricted stopping powers
and to set Moller, Bhabha, and bremsstrahlung cross sections to zero. All
bremsstrahlung photons were assumed to escape in the CSDA calculations.
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