# Spencer-Attix water to air mass collision stopping power ratios as a function of depth and beam quality, $R_{50}$

D.W.O. Rogers

Ionizing Radiation Standards Institute for National Measurement Standards National Research Council of Canada Ottawa, Canada K1A 0R6

(613) 993-2715 E-mail: drogers@physics.carleton.ca (since 2003)

June, 2000

PIRS-719

#### Abstract

This brief report presents tabulated values of  $\left(\frac{\overline{L}}{\rho}\right)_{\text{air}}^{\text{water}}$  as a function of depth, z, and beam quality expressed by the depth at which the dose falls to 50% of dose maximum, R<sub>50</sub>. The values are those given by the general formula of Burns et al (Med. Phys. **23** (1996) 383–388). The report also presents a series of figures which compare the original database of stopping-power ratios which were fit to get the general formula.

#### Contents

| 1        | The formula                               | 1 |
|----------|-------------------------------------------|---|
| <b>2</b> | Comparisons with original data            | 5 |
| 3        | Appendix: Fortran listing of the function | 9 |

Parts of this report have been upgraded and published as "Accuracy of the Burns equation for stopping-power ratio as a function of depth and  $R_{50}$ ", Medical Physics **31** (2004) 2961 – 2963

# 1 The formula

Burns *et al.*<sup>1</sup> published a formula which gives the Spencer-Attix water-to-air mass collision stopping power ratio as a function of beam quality,  $R_{50}$ , and depth, Z (both in cm).  $R_{50}$  is the depth at which the dose in a broad electron beam drops to 50% of the maximum dose. The formula is:

$$\left(\frac{\overline{L}}{\rho}\right)_{\text{air}}^{\text{water}} (\mathbf{R}_{50}, z) = \frac{a + b(ln\mathbf{R}_{50}) + c(ln\mathbf{R}_{50})^2 + d(z/\mathbf{R}_{50})}{1 + e(ln\mathbf{R}_{50}) + f(ln\mathbf{R}_{50})^2 + g(ln\mathbf{R}_{50})^3 + h(z/\mathbf{R}_{50})}$$
(1)

The values for the 8 coefficients are:

| a= 1.0752   | b= -0.50867 | c= 0.088670 | d= -0.08402 |
|-------------|-------------|-------------|-------------|
| e= -0.42806 | f= 0.064627 | g= 0.003085 | h= -0.12460 |

A FORTRAN function routine is available at the a listing in the appendix of this report or directly on the NRC web site at:

http://www.irs.inms.nrc.ca/inms/irs/papers/SPRR50/node12.html

This fit was determined by allowing the Jandal Scientific program Table Curve to provide the best possible fit to a large number of stopping-power ratios calculated by Ding *et al.*<sup>2</sup> for realistic accelerator spectra from many different accelerators. These spectra were calculated using the code BEAM.<sup>3</sup>

The given coefficients result in an rms deviation of 0.4% and a maximum deviation of 1.0% for  $z/R_{50}$  ranging between 0.02 and 1.1. The maximum deviation is increases to 1.7% if  $z/R_{50}$  values up to 1.2 are considered. The values of  $R_{50}$  included in the fit ranged from 0.98 cm to 18.63 cm.

|                | $ m R_{50}~(cm)$ |                  |                     |                  |           |                  |                  |                  |             |                  |
|----------------|------------------|------------------|---------------------|------------------|-----------|------------------|------------------|------------------|-------------|------------------|
| $z/R_{50}$     | 1.00             | 1.50             | 2.00                | 2.50             | 3.00      | 3.50             | 4.00             | 4.50             | 5.00        | 5.50             |
|                |                  |                  |                     |                  |           |                  |                  |                  |             |                  |
| 0.000          | 1.0752           | 1.0552           | 1.0406              | 1.0288           | 1.0189    | 1.0103           | 1.0027           | 0.9958           | 0.9896      | 0.9839           |
| 0.050          | 1.0777           | 1.0581           | 1.0437              | 1.0322           | 1.0224    | 1.0140           | 1.0065           | 0.9997           | 0.9936      | 0.9880           |
| 0.100          | 1.0802           | 1.0610           | 1.0469              | 1.0356           | 1.0261    | 1.0178           | 1.0104           | 1.0038           | 0.9978      | 0.9922           |
| 0.150          | 1.0828           | 1.0639           | 1.0501              | 1.0391           | 1.0297    | 1.0216           | 1.0144           | 1.0080           | 1.0020      | 0.9966           |
|                |                  |                  |                     |                  |           |                  |                  |                  |             |                  |
| 0.200          | 1.0854           | 1.0669           | 1.0534              | 1.0426           | 1.0335    | 1.0256           | 1.0186           | 1.0122           | 1.0064      | 1.0011           |
| 0.250          | 1.0881           | 1.0700           | 1.0568              | 1.0462           | 1.0374    | 1.0297           | 1.0228           | 1.0166           | 1.0109      | 1.0057           |
| 0.300          | 1.0907           | 1.0730           | 1.0602              | 1.0499           | 1.0413    | 1.0338           | 1.0271           | 1.0211           | 1.0155      | 1.0104           |
| 0.350          | 1.0935           | 1.0762           | 1.0637              | 1.0537           | 1.0453    | 1.0381           | 1.0316           | 1.0257           | 1.0203      | 1.0153           |
|                |                  |                  |                     |                  |           |                  |                  |                  |             |                  |
| 0.400          | 1.0962           | 1.0793           | 1.0672              | 1.0576           | 1.0495    | 1.0424           | 1.0361           | 1.0304           | 1.0252      | 1.0203           |
| 0.450          | 1.0990           | 1.0826           | 1.0708              | 1.0615           | 1.0537    | 1.0468           | 1.0408           | 1.0353           | 1.0302      | 1.0255           |
| 0.500          | 1.1018           | 1.0859           | 1.0745              | 1.0655           | 1.0580    | 1.0514           | 1.0456           | 1.0402           | 1.0353      | 1.0308           |
| 0.550          | 1.1047           | 1.0892           | 1.0782              | 1.0696           | 1.0624    | 1.0561           | 1.0505           | 1.0454           | 1.0407      | 1.0363           |
|                |                  |                  |                     |                  |           |                  |                  |                  |             |                  |
| 0.600          | 1.1076           | 1.0926           | 1.0820              | 1.0738           | 1.0669    | 1.0609           | 1.0555           | 1.0507           | 1.0461      | 1.0419           |
| 0.650          | 1.1105           | 1.0960           | 1.0859              | 1.0780           | 1.0715    | 1.0658           | 1.0607           | 1.0561           | 1.0518      | 1.0478           |
| 0.700          | 1.1135           | 1.0995           | 1.0899              | 1.0824           | 1.0762    | 1.0708           | 1.0660           | 1.0617           | 1.0576      | 1.0538           |
| 0.750          | 1.1165           | 1.1031           | 1.0939              | 1.0868           | 1.0810    | 1.0760           | 1.0715           | 1.0674           | 1.0636      | 1.0600           |
|                |                  |                  |                     |                  |           |                  |                  |                  |             |                  |
| 0.800          | 1.1196           | 1.1067           | 1.0980              | 1.0914           | 1.0860    | 1.0813           | 1.0772           | 1.0734           | 1.0698      | 1.0664           |
| 0.850          | 1.1227           | 1.1104           | 1.1022              | 1.0960           | 1.0910    | 1.0868           | 1.0830           | 1.0795           | 1.0762      | 1.0731           |
| 0.900          | 1.1258           | 1.1141           | 1.1065              | 1.1008           | 1.0962    | 1.0924           | 1.0889           | 1.0858           | 1.0828      | 1.0800           |
| 0.950          | 1.1290           | 1.1180           | 1.1108              | 1.1057           | 1.1016    | 1.0981           | 1.0951           | 1.0923           | 1.0896      | 1.0871           |
| 1 000          | 1 1 2 2 2        | 1 1010           | 1 1150              | 1 1100           | 1 1070    | 1 1040           | 1 1014           | 1 0000           | 1.0067      | 1.0045           |
| 1.000          | 1.1322           | 1.1218           | 1.1103              | 1.1100<br>1 1157 | 1.1070    | 1.1040           | 1.1014           | 1.0990           | 1.0907      | 1.0945           |
| 1.000          | 1.1000           | 1.1208           | 1.1198              | 1.1107           | 1.1120    | 1.1101           | 1.1079           | 1.1009           | 1.1040      | 1.1021           |
| 1.100<br>1.150 | 1.1009           | 1.1290           | 1.1240<br>1 1 2 0 2 | 1.1209           | 1.1104    | 1.1105           | 1.1140<br>1.1016 | 1.1101           | 1.1110      | 1.1100           |
| 1.100          | 1.1422           | 1.1009           | 1.1292              | 1.1205           | 1.1245    | 1.1220           | 1.1210           | 1.1204           | 1.1194      | 1.1100           |
| 1 200          | 1 1/157          | 1 1 3 8 1        | 1 1 2/1             | 1 1 2 1 8        | 1 1 2 0 2 | 1 1 2 9/         | 1 1 9 8 7        | 1 1 9 8 1        | 1 1 2 7 5   | 1 1 2 6 8        |
| 1.200<br>1.250 | 1.1401           | 1.1001<br>1 1423 | 1 1 1 3 9 0         | 1.1010<br>1 1374 | 1.1366    | 1.1254<br>1 1362 | 1.1201<br>1 1361 | 1.1201<br>1 1360 | 1 1 1 3 5 9 | 1.1200<br>1 1357 |
| 1 300          | 1.1491<br>1 1527 | 1 1466           | 1 1440              | 1 1431           | 1 1430    | 1 1433           | 1 1437           | 1 1449           | 1 1446      | 1 1 1 4 4 9      |
| 1.350          | 1.1563           | 1 1510           | 1 1492              | 1 1490           | 1 1496    | 1 1505           | 1 1516           | 1.1527           | 1 1537      | 1 1545           |
| 1.000          | 1.1000           | 1.1010           | 1.1104              | 1.1100           | 1.1100    | 1.1000           | 1.1010           | 1.1041           | 1.1001      | 1.1010           |
| 1.400          | 1.1599           | 1.1555           | 1.1545              | 1.1550           | 1.1563    | 1.1580           | 1.1598           | 1.1615           | 1.1631      | 1.1645           |

Table 1: Values of the Spencer-Attix water to air mass collision stopping power ratio ( $\Delta = 10$  keV) as a function of  $R_{50}$  and depth/ $R_{50}$ . Values calculated by eqn 1 (from Burns *et al.*<sup>1</sup>).

|                    | $  R_{50} (cm)$ |        |        |        |        |        |        |        |        |        |
|--------------------|-----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| z/ R <sub>50</sub> | 6.00            | 6.50   | 7.00   | 7.50   | 8.00   | 8.50   | 9.00   | 9.50   | 10.00  | 10.50  |
|                    |                 |        |        |        |        |        |        |        |        |        |
| 0.000              | 0.9786          | 0.9738 | 0.9693 | 0.9651 | 0.9612 | 0.9575 | 0.9541 | 0.9508 | 0.9478 | 0.9450 |
| 0.050              | 0.9828          | 0.9780 | 0.9736 | 0.9694 | 0.9655 | 0.9619 | 0.9584 | 0.9552 | 0.9522 | 0.9493 |
| 0.100              | 0.9871          | 0.9824 | 0.9780 | 0.9738 | 0.9700 | 0.9664 | 0.9630 | 0.9597 | 0.9567 | 0.9539 |
| 0.150              | 0.9916          | 0.9869 | 0.9825 | 0.9784 | 0.9746 | 0.9710 | 0.9676 | 0.9644 | 0.9614 | 0.9585 |
|                    |                 |        |        |        |        |        |        |        |        |        |
| 0.200              | 0.9961          | 0.9915 | 0.9872 | 0.9832 | 0.9794 | 0.9758 | 0.9724 | 0.9693 | 0.9662 | 0.9634 |
| 0.250              | 1.0008          | 0.9963 | 0.9920 | 0.9881 | 0.9843 | 0.9808 | 0.9774 | 0.9742 | 0.9712 | 0.9684 |
| 0.300              | 1.0056          | 1.0012 | 0.9970 | 0.9931 | 0.9894 | 0.9859 | 0.9826 | 0.9794 | 0.9764 | 0.9736 |
| 0.350              | 1.0106          | 1.0063 | 1.0022 | 0.9983 | 0.9947 | 0.9912 | 0.9879 | 0.9848 | 0.9818 | 0.9789 |
|                    |                 |        |        |        |        |        |        |        |        |        |
| 0.400              | 1.0158          | 1.0115 | 1.0075 | 1.0037 | 1.0001 | 0.9967 | 0.9934 | 0.9903 | 0.9873 | 0.9845 |
| 0.450              | 1.0210          | 1.0169 | 1.0130 | 1.0092 | 1.0057 | 1.0023 | 0.9991 | 0.9960 | 0.9931 | 0.9903 |
| 0.500              | 1.0265          | 1.0225 | 1.0186 | 1.0150 | 1.0115 | 1.0082 | 1.0050 | 1.0020 | 0.9991 | 0.9963 |
| 0.550              | 1.0321          | 1.0282 | 1.0245 | 1.0210 | 1.0176 | 1.0143 | 1.0112 | 1.0082 | 1.0053 | 1.0025 |
|                    |                 |        |        |        |        |        |        |        |        |        |
| 0.600              | 1.0379          | 1.0342 | 1.0306 | 1.0271 | 1.0238 | 1.0206 | 1.0175 | 1.0146 | 1.0117 | 1.0090 |
| 0.650              | 1.0440          | 1.0403 | 1.0368 | 1.0335 | 1.0303 | 1.0272 | 1.0242 | 1.0213 | 1.0184 | 1.0157 |
| 0.700              | 1.0502          | 1.0467 | 1.0434 | 1.0401 | 1.0370 | 1.0340 | 1.0310 | 1.0282 | 1.0254 | 1.0227 |
| 0.750              | 1.0566          | 1.0533 | 1.0501 | 1.0470 | 1.0440 | 1.0411 | 1.0382 | 1.0354 | 1.0327 | 1.0300 |
|                    |                 |        |        |        |        |        |        |        |        |        |
| 0.800              | 1.0632          | 1.0601 | 1.0571 | 1.0541 | 1.0512 | 1.0484 | 1.0456 | 1.0429 | 1.0402 | 1.0376 |
| 0.850              | 1.0701          | 1.0672 | 1.0643 | 1.0616 | 1.0588 | 1.0561 | 1.0534 | 1.0507 | 1.0481 | 1.0455 |
| 0.900              | 1.0772          | 1.0745 | 1.0719 | 1.0693 | 1.0667 | 1.0641 | 1.0615 | 1.0589 | 1.0564 | 1.0538 |
| 0.950              | 1.0846          | 1.0822 | 1.0797 | 1.0773 | 1.0748 | 1.0724 | 1.0699 | 1.0675 | 1.0650 | 1.0625 |
|                    |                 |        |        |        |        |        |        |        |        |        |
| 1.000              | 1.0923          | 1.0901 | 1.0879 | 1.0856 | 1.0834 | 1.0811 | 1.0787 | 1.0764 | 1.0740 | 1.0716 |
| 1.050              | 1.1002          | 1.0983 | 1.0964 | 1.0943 | 1.0923 | 1.0901 | 1.0880 | 1.0857 | 1.0834 | 1.0811 |
| 1.100              | 1.1085          | 1.1069 | 1.1052 | 1.1034 | 1.1016 | 1.0996 | 1.0976 | 1.0955 | 1.0933 | 1.0911 |
| 1.150              | 1.1171          | 1.1158 | 1.1144 | 1.1129 | 1.1113 | 1.1096 | 1.1077 | 1.1058 | 1.1037 | 1.1016 |
|                    |                 |        |        |        |        |        |        |        |        |        |
| 1.200              | 1.1260          | 1.1251 | 1.1240 | 1.1228 | 1.1215 | 1.1200 | 1.1183 | 1.1165 | 1.1146 | 1.1126 |
| 1.250              | 1.1353          | 1.1348 | 1.1341 | 1.1332 | 1.1321 | 1.1309 | 1.1295 | 1.1279 | 1.1261 | 1.1242 |
| 1.300              | 1.1450          | 1.1449 | 1.1446 | 1.1441 | 1.1433 | 1.1423 | 1.1412 | 1.1398 | 1.1382 | 1.1365 |
| 1.350              | 1.1551          | 1.1555 | 1.1556 | 1.1555 | 1.1551 | 1.1544 | 1.1535 | 1.1524 | 1.1510 | 1.1494 |
|                    |                 |        |        |        |        |        |        |        |        |        |
| 1.400              | 1.1657          | 1.1666 | 1.1671 | 1.1674 | 1.1674 | 1.1671 | 1.1665 | 1.1656 | 1.1645 | 1.1631 |

Table 2: Values of the Spencer-Attix water to air mass collision stopping power ratio ( $\Delta = 10$  keV) as a function of  $R_{50}$  and depth/ $R_{50}$ . Values calculated by eqn 1 (from Burns *et al.*<sup>1</sup>).

|   |            | $R_{50}$ (cm) |        |        |           |           |           |        |        |           |           |
|---|------------|---------------|--------|--------|-----------|-----------|-----------|--------|--------|-----------|-----------|
|   | $z/R_{50}$ | 11.00         | 12.00  | 13.00  | 14.00     | 15.00     | 16.00     | 17.00  | 18.00  | 19.00     | 20.00     |
| Ì |            |               |        |        |           |           |           |        |        |           |           |
|   | 0.000      | 0.9423        | 0.9373 | 0.9329 | 0.9290    | 0.9254    | 0.9222    | 0.9193 | 0.9167 | 0.9143    | 0.9121    |
|   | 0.050      | 0.9466        | 0.9417 | 0.9373 | 0.9333    | 0.9297    | 0.9264    | 0.9235 | 0.9208 | 0.9183    | 0.9161    |
|   | 0.100      | 0.9512        | 0.9462 | 0.9417 | 0.9377    | 0.9340    | 0.9307    | 0.9277 | 0.9250 | 0.9225    | 0.9202    |
|   | 0.150      | 0.9558        | 0.9508 | 0.9463 | 0.9423    | 0.9386    | 0.9352    | 0.9321 | 0.9293 | 0.9268    | 0.9244    |
|   |            |               |        |        |           |           |           |        |        |           |           |
|   | 0.200      | 0.9607        | 0.9557 | 0.9511 | 0.9470    | 0.9433    | 0.9398    | 0.9367 | 0.9338 | 0.9312    | 0.9288    |
|   | 0.250      | 0.9657        | 0.9606 | 0.9561 | 0.9519    | 0.9481    | 0.9446    | 0.9415 | 0.9385 | 0.9358    | 0.9333    |
|   | 0.300      | 0.9709        | 0.9658 | 0.9612 | 0.9570    | 0.9532    | 0.9496    | 0.9464 | 0.9434 | 0.9406    | 0.9380    |
|   | 0.350      | 0.9762        | 0.9712 | 0.9665 | 0.9623    | 0.9584    | 0.9548    | 0.9515 | 0.9484 | 0.9455    | 0.9429    |
|   |            |               |        |        |           |           |           |        |        |           |           |
|   | 0.400      | 0.9818        | 0.9767 | 0.9721 | 0.9678    | 0.9638    | 0.9601    | 0.9568 | 0.9536 | 0.9507    | 0.9480    |
|   | 0.450      | 0.9876        | 0.9825 | 0.9778 | 0.9735    | 0.9694    | 0.9657    | 0.9623 | 0.9590 | 0.9560    | 0.9532    |
|   | 0.500      | 0.9936        | 0.9885 | 0.9838 | 0.9794    | 0.9753    | 0.9715    | 0.9680 | 0.9647 | 0.9616    | 0.9587    |
|   | 0.550      | 0.9998        | 0.9947 | 0.9900 | 0.9855    | 0.9814    | 0.9775    | 0.9739 | 0.9705 | 0.9673    | 0.9644    |
|   |            |               |        |        |           |           |           |        |        |           |           |
|   | 0.600      | 1.0063        | 1.0012 | 0.9964 | 0.9920    | 0.9878    | 0.9838    | 0.9801 | 0.9766 | 0.9734    | 0.9703    |
|   | 0.650      | 1.0130        | 1.0079 | 1.0032 | 0.9986    | 0.9944    | 0.9904    | 0.9866 | 0.9830 | 0.9796    | 0.9764    |
|   | 0.700      | 1.0201        | 1.0150 | 1.0102 | 1.0056    | 1.0013    | 0.9972    | 0.9933 | 0.9896 | 0.9861    | 0.9828    |
|   | 0.750      | 1.0274        | 1.0223 | 1.0175 | 1.0129    | 1.0085    | 1.0043    | 1.0003 | 0.9966 | 0.9930    | 0.9895    |
|   |            |               |        |        |           |           |           |        |        |           |           |
|   | 0.800      | 1.0350        | 1.0300 | 1.0251 | 1.0205    | 1.0160    | 1.0118    | 1.0077 | 1.0038 | 1.0001    | 0.9965    |
|   | 0.850      | 1.0430        | 1.0380 | 1.0331 | 1.0284    | 1.0239    | 1.0196    | 1.0154 | 1.0114 | 1.0075    | 1.0038    |
|   | 0.900      | 1.0513        | 1.0464 | 1.0415 | 1.0368    | 1.0322    | 1.0277    | 1.0234 | 1.0193 | 1.0153    | 1.0115    |
|   | 0.950      | 1.0600        | 1.0551 | 1.0503 | 1.0455    | 1.0408    | 1.0363    | 1.0319 | 1.0276 | 1.0235    | 1.0195    |
|   |            |               |        |        |           |           |           |        |        |           |           |
|   | 1.000      | 1.0692        | 1.0643 | 1.0595 | 1.0547    | 1.0499    | 1.0453    | 1.0407 | 1.0363 | 1.0320    | 1.0279    |
|   | 1.050      | 1.0788        | 1.0740 | 1.0691 | 1.0643    | 1.0595    | 1.0547    | 1.0500 | 1.0455 | 1.0410    | 1.0367    |
|   | 1.100      | 1.0888        | 1.0841 | 1.0793 | 1.0744    | 1.0695    | 1.0646    | 1.0598 | 1.0551 | 1.0505    | 1.0460    |
|   | 1.150      | 1.0994        | 1.0948 | 1.0900 | 1.0851    | 1.0801    | 1.0751    | 1.0701 | 1.0652 | 1.0604    | 1.0558    |
|   | 1 9 9 9    |               |        |        | 1 0 0 0 0 | 1 0 0 1 0 | 1 0 0 0 1 | 1 0010 |        | 1 0 - 00  | 1         |
|   | 1.200      | 1.1105        | 1.1060 | 1.1013 | 1.0963    | 1.0912    | 1.0861    | 1.0810 | 1.0759 | 1.0709    | 1.0660    |
|   | 1.250      | 1.1222        | 1.1179 | 1.1132 | 1.1082    | 1.1030    | 1.0978    | 1.0925 | 1.0872 | 1.0820    | 1.0769    |
|   | 1.300      | 1.1346        | 1.1304 | 1.1257 | 1.1208    | 1.1155    | 1.1101    | 1.1047 | 1.0992 | 1.0938    | 1.0884    |
|   | 1.350      | 1.1477        | 1.1436 | 1.1391 | 1.1341    | 1.1288    | 1.1232    | 1.1176 | 1.1119 | 1.1062    | 1.1005    |
|   | 1 400      | 1 1015        |        | 1 1500 | 1 1 400   | 1 1 400   | 1 1 0 7 1 | 1 1010 | 1 1050 | 1 1 1 0 0 | 1 1 1 9 4 |
|   | 1.400      | 1.1615        | 1.1577 | 1.1532 | 1.1482    | 1.1428    | 1.1371    | 1.1313 | 1.1253 | 1.1193    | 1.1134    |

Table 3: Values of the Spencer-Attix water to air mass collision stopping power ratio ( $\Delta = 10$  keV) as a function of  $R_{50}$  and depth/ $R_{50}$ . Values calculated by eqn 1 (from Burns *et al.*<sup>1</sup>).

# 2 Comparisons with original data

The following figures present comparisons of the stopping-power ratios generated by the general formula and the original database of stopping-power ratios calculated by Ding et al.<sup>3</sup>

The quality of the fit breaks down rapidly after the depth is greater than  $R_{50}$ . On the other hand, the dose is decreasing rapidly as well.

The plots also show that the errors can be significant right at the surface, especially for close-to-monoenergetic incident beams (such as those from the Therac and MM50 machines).



Figure 1: Differences between the generalized fit and the individual values for the Clinac 2100C beams as calculated by Ding *et al.*<sup>2</sup>

0.020

0.016

0.014

0.012 0.010 0.008 0.006

|spr – fit|





Figure 2: Differences between the generalized fit and the individual values for the SL75/20 beams as calculated by Ding *et al.*<sup>2</sup>



Figure 3: Differences between the generalized fit and the individual values for the KD 2 beams as calculated by Ding *et al.*<sup>2</sup>



Figure 4: Differences between the generalized fit and the individual values for the Therac 20 beams as calculated by Ding *et al.*<sup>2</sup> These beams are very close to monoenergetic.



Figure 5: Differences between the generalized fit and the individual values for the Racetrack microtron (MM-50) beams as calculated by Ding *et al.*<sup>2</sup> These beams are very close to monoenergetic.



Figure 6: Differences between the generalized fit and the individual values for the NPL beams as calculated by Ding and Rogers.<sup>4</sup> These beams are very close to monoenergetic.



Figure 7: Differences between the generalized fit and the individual values for the NRC 20 MeV beam as calculated by Ding *et al.*<sup>2</sup> These beams are very close to monoenergetic.

#### 3 Appendix: Fortran listing of the function

```
С
       spr_3D -3D fit to sprs vs R50 & z/R50 (0.02 to 1.2 z/R50)
С
       COPYRIGHT NRC 1995
С
 This software and data are provided "as is" without any warranty or
С
  guarantee of any kind, either expressed or implied, as to its accuracy
  or ability to perform particular calculations.
С
real function spr_3D(z, R50)
С
С
       This returns a value of the Spencer-Attix water to air stopping
С
       power ratio as a function of depth z (in cm) and R50(cm).
С
С
       The fit is based on data in:
С
       Calculation of stopping-power ratios using realistic clinical
С
       electron beams, G.X. Ding et al. Med. Phys. 22(1995)489-501
С
       and this fit is presented in:
С
       R_50 as a beam quality specifier for selecting stopping-power
С
       ratios and reference depths for electron dosimetry
С
       D.T. Burns et al
                         Med. Phys.
                                    23 (1996) 383-388
С
       This fit is the best available via Jandel Scientific's 3D Tablecurve
С
       Code put together by D.W.O. Rogers NRC March 1995
С
       Test results:
                     If working correctly the code returns the following
С
              R.50
                      spr_3D
       7.
С
              3
                      1.0440
       1
С
       4
              3
                      1.1473
С
              20
       1
                      0.9161
С
       10
              20
                      0.9587
С
       20
              20
                      1.0279
IMPLICIT NONE
     DOUBLE PRECISION x,y,z1,z3
     REAL z,R50
     x = R50
     x = DLOG(x)
     y = z/R50
     z1=1.075177841118226+x*(-0.5086698872574685+
    1x*(0.08867097624170420)) -0.08401847878029861*y
     z3=1.0000000000000+x*(-0.4280646009182138+
    1x*(0.06462718784963824+x*(0.003084672219886146)))
    2-0.1246007344450053*y
     spr_3D=z1/z3
     RETURN
     END
```

### References

- D. T. Burns, G. X. Ding, and D. W. O. Rogers, R<sub>50</sub> as a beam quality specifier for selecting stopping-power ratios and reference depths for electron dosimetry, Med. Phys. 23, 383 – 388 (1996).
- [2] G. X. Ding, D. W. O. Rogers, and T. R. Mackie, Calculation of stopping-power ratios using realistic clinical electron beams, Med. Phys. 22, 489 – 501 (1995).
- [3] D. W. O. Rogers, B. A. Faddegon, G. X. Ding, C.-M. Ma, J. Wei, and T. R. Mackie, BEAM: A Monte Carlo code to simulate radiotherapy treatment units, Med. Phys. 22, 503 – 524 (1995).
- [4] G. X. Ding and D. W. O. Rogers, Monte Carlo simulation of NPL linac and calculation of dose distributions and water/air stopping-power ratios, National Research Council of Canada Report PIRS 0399 (1993).