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Purpose: To accurately and efficiently implement charged particle transport in a magnetic field in
EGSnrc and validate the code for the use in phantom and ion chamber simulations.

Methods: The effect of the magnetic field on the particle motion and position is determined using
one- and three-point numerical integrations of the Lorentz force on the charged particle and is added
to the condensed history calculation performed by the EGSnrc PRESTA-II algorithm. The code is
tested with a Fano test adapted for the presence of magnetic fields. The code is compatible with all
EGSnrc based applications, including egs++. Ion chamber calculations are compared to experimental
measurements and the effect of the code on the efficiency and timing is determined.

Results: Agreement with the Fano test’s theoretical value is obtained at the 0.1% level for large
step-sizes and in magnetic fields as strong as 5 T. The NE2571 dose calculations achieve agreement
with the experiment within 0.5% up to 1 T beyond which deviations up to 1.2% are observed. Uniform
air gaps of 0.5 and 1 mm and a misalignment of the incoming photon beam with the magnetic field
are found to produce variations in the normalized dose on the order of 1%. These findings necessitate
a clear definition of all experimental conditions to allow for accurate Monte Carlo simulations. It is
found that ion chamber simulation times are increased by only 38%, and a 10 X 10 x 6 cm® water
phantom with (3 mm)? voxels experiences a 48% increase in simulation time as compared to the
default EGSnrc with no magnetic field.

Conclusions: The incorporation of the effect of the magnetic fields in EGSnrc provides the capa-
bility to calculate high accuracy ion chamber and phantom doses for the use in MRI-radiation
systems. Further, the effect of apparently insignificant experimental details is found to be accentuated
by the presence of the magnetic field. © 2016 American Association of Physicists in Medicine.
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1. INTRODUCTION

The potential benefits of introducing external magnetic fields
to radiation therapy have motivated a variety of studies. Shih'
and Bielajew? explored the dose enhancing effects of magnetic
fields in electron beams and found that the effects of the field
can nearly double the maximum dose in water.> Although
photon beams do not directly experience the influence of
the Lorentz force, electrons set in motion in the phantom
will curve and can noticeably impact surface doses.*” This
is known as the electron return effect and is noticeable
in regions of abrupt density changes or localized magnetic
fields. Additional perturbations in photon beams such as dose
enhancement and reductions in penumbra dose have been
established.>%*

Several groups are developing synergistic MRI-radiation
therapy machines for magnetic resonance guided radiation
therapy (MRgRT) applications.®!%!! These machines have
variable beam energy, magnetic field magnitudes, and geo-
metric configurations. In addition to the consequences of
the magnetic field on dose distributions, the question of
calibration and dosimetry in magnetic fields has arisen.'>"'4
Ion chamber and solid state detector responses per unit
dose are found to vary by several percent in the presence
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of a magnetic field when compared to the 0 T case.!*!

This necessitates the calculation of high precision correction
factors, and reliable and accurate Monte Carlo techniques to
handle the magnetic fields.

Currently, PENELOPE,!”
charged particle transport in magnetic fields, but EGSnrc
lost this capability in the transition from EGS4. A few
groups have adapted the EGS4 magnetic field macros for
use in EGSnrc.'>?! Essentially these changes apply the
theory originally described by Bielajew.?”> PENELOPE makes
use of a similar algorithm and recent Fano tests demonstrate
approximately 1% differences from the expected results.?’
This approach requires a significant reduction in step-size
which can negatively impact the efficiency. Geant4 has also
been used to calculate ion chamber doses in the presence
of magnetic fields,'” but there may be a significant drop in
efficiency through the use of GEanT4.24-2

In this work, we implement charged particle transport
in the presence of magnetic fields in EGSnrc. The new
algorithm improves on the previous EGS4 magnetic field
macros package, introduces a specialized single scatter (SS)
algorithm, and allows for proper boundary crossing. The
code is validated by a new Fano test that accommodates an
external magnetic field.2” Further, comparisons of calculated

McNp5,'8 and Geant4d allow for
19,20
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to experimental ion chamber doses at magnetic fields ranging
from O to 2 T are performed for various transport settings.
Our ion chamber dose calculations agree in most cases
with previous studies'*!> even for large step lengths in the
EGSnrc calculations. Finally, we perform a timing study to
demonstrate notable improvements in efficiency.

The main goal of this work is to produce a robust and
reliable magnetic field transport algorithm which does not
place overly strict restrictions on the step-size and allows
for high accuracy ion chamber and other calculations. This
will allow for detailed analysis of the effects of the magnetic
field without compromising calculation time and permit the
determination of detector calibration factors for use in MRI-
radiotherapy systems.

2. METHODS

2.A. Lorentz force in a condensed history
(CH) calculation

Charged particle transport in EGSnrc is performed by
grouping a large number of interactions into several steps
between discrete events (e.g., bremsstrahlung, knock-on
electrons, etc.) which are accounted for an individual ba-
sis. EGSnrc uses an adaptive electron/positron stepping
mechanism in which larger steps are calculated using a
CH algorithm, PRESTA-II (default in EGSnrc), and a SS
algorithm is used for short steps.”®? In relation to the
magnetic field code, the specialized case of the SS mode is
given in the appropriate section below, and the PRESTA-II
algorithm is outlined here. In a PRESTA-II step of length
s, shown by the gray line in Fig. 1, the particle begins with
an initial direction of motion, #(0), velocity, 7(0), position,
X,, and energy, E,. Two scattering directions are sampled,
ii(s/2) and i(s), the directions at the middle and the end
of the step, respectively. These direction vectors correspond
to the velocities ¥(s/2) and J(s). The particle is transported
to the position Xcy by the distance given by the original step
length, s. The energy lost is computed on the basis of s, and
the electron moves on to the next step (SS, CH, or a discrete
event). This process is continued until the charged particle’s
energy falls below a user set energy (ECUT) at which point
the particle’s history is terminated and its remaining kinetic
energy is deposited at its current position.

Fig. 1. Simplified EGSnrc PRESTA-II step in the presence of a magnetic
field. The particle is initially at X, with velocity 7(0), it is then transported a
step length, s, to Xcy by the CH algorithm which samples direction of motion
at an intermediate, 7'(s /2), and final, #(s). AXp and Ail g are calculated using
Egs. (2) and (6) to obtain the final position, X, and velocity, 7.
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To determine the influence of a magnetic field on a charged
particle traveling in a material, the interplay between the
medium’s scattering and the Lorentz forces must be evaluated.
Bielajew?” encoded this problem in the following general
equation of motion:

p _ » 2 SN
Z = med(E(t)) + Fem(E(t)sx(t)’M(t))’ (D
where p is the momentum, ¢ is the time, ﬁmed is the force on
the particle due to the medium (i.e., elastic scattering), ﬁem
is the Lorentz force due to the external electric and magnetic
fields, E(¢) is the energy, X(¢) is the particle position, and ii(z)
is the particle’s unit direction of motion. Bielajew placed this
equation in the context of a CH step and demonstrated that in
the case of no electric field the influence of the magnetic field
on the direction of motion reduces to

2 t
Aiip(t) = ‘12 / dr'5(t")x B, )
0

o~o

where Aiig is the change in direction vector due to the
magnetic field during a time period ¢, c is the speed of light,
B is the magnetic field, E,, is the particle’s initial total energy,
g is the particle’s charge, v(z) is the particle velocity, and
vo = 9(0) |. Under the assumptions of (i) little energy loss,
(ii) a constant magnetic field, and (iii) minimal change in the
direction of motion during the step, a one-point numerical
integration (1-PI) technique can be used to evaluate Eq. (2)
using

2
Aiigy = (5(0)xB), (3)

where the subscript Bl indicates that this is a one-point
integration for the influence of the magnetic field. The above
has been used by many groups as a convenient method
for determining the effect of the magnetic field in a CH
step and complies with the assumptions made originally
by Bielajew.'??! To account for energy loss and scattering
during the step [i.e., weakening assumptions (i) and (iii)], the
intermediate velocities in a PRESTA-II algorithm can be used
to apply a three-point integration (3-PI) of Eq. (2) to give

gtc?

60E. (@(0)+45(z/2)+0(r))x B, 4)

where the subscript B3 indicates that this is a three-point
integration (3-PI) for the influence of the magnetic field.
Here the interaction of the magnetic field with the particle
is sampled at three time positions which accommodates for
the varying energy and direction of motion. #(¢) is equal to 5(s)
in Fig. 1, and the velocity corresponding to v(s/2) is used as an
approximation to the velocity at #/2. This assumption is used
to facilitate the computation and, on average, is expected to
be close enough to improve on the 1-PI technique.

To evaluate the time variable used in the numerical inte-
gration techniques, a two-point integration of the conventional
time, velocity, and distance relationship using the initial, v,,,
and final, vy, velocities can be performed. This produces the
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following expression for the time:

s {1 v,
te —|= . 5
vo(2+21)f) )

Using either integration method to obtain Aiig, the change in
the position due to the magnetic field has been shown to be??

AZp= %Aﬁg, 6)

where the energy correction variable, 7, is defined as the
bracketed term in Eq. (5).

The influence of the magnetic field is added to the CH step
as in Fig. 1. The position Xcy is adjusted by adding AXp to
obtain X. The final velocity, v, is determined by adding the
change in the direction of motion due to the magnetic field,
calculated using Egs. (3) or (4), to the direction of 5(¢). To
perform the addition and normalization of the direction vector
properly, a procedure which adjusts the vector components
perpendicular to the magnetic field while conserving the
vector’s magnitude in the parallel direction is used (see
Appendix A for details). Overall, PRESTA-II performs a
regular CH step and the magnetic field influence is included
after the CH calculations.

The three assumptions made above translate into step-
size restriction parameters. Since a constant magnetic field
is being considered and there are energy loss step-size control
parameters in EGSnrc already, only the restriction on the
change in the direction due to the magnetic field will be
considered and encoded using:

Ou = |Alig|, (N

recalling that || = 1, makes &,, a limit on the fractional change
of the direction of motion produced by the magnetic field.
Given a value for J,, Egs. (3) and (7) are used to obtain the
step-size limit,

SuB’E,
lqu(0)x B|
where S is the particle velocity normalized by the speed of
light and the 7 term is set to 1 so that this step-size quantity
is consistent with other implementations which use a similar
magnetic field transport theory. The 1-PI equation is used here
since the scattering angles and energy loss over the step are
required for the 3-PI method, and this necessitates knowledge
of the step-size which Eq. (7) is used to determine. Appendix B
provides a description of an additional limit on the step length
which ensures that a CH step does not cause the particle to
improperly transition into another region due to the addition of
AXp. These restrictions represent the maximum CH step that
will be permitted in the magnetic field, and discrete events,
boundaries, etc., will also restrict certain paths.

Using a ¢,, of 0.02 has become common for Monte Carlo
simulations which use similar theories, but this produces
a potentially severe increase in computational time. The
solution for a dose calculation in the presence of a magnetic
field is expected to converge as J,, decreases, and determining
the largest possible J, that does not cause variations in the
solution is required to improve efficiency. It is convenient to

S(Baéuan) = (8)
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make use of this parameter as a benchmarking tool of the
stability and efficiency of the various transport options.

2.B. Scaled §, algorithm

The truncation error on a 3-PI is proportional to the fourth
derivative of the function being integrated and to the fifth
power of the step-size used to evaluate the integral.’® Since
a time independent magnetic field is simulated, the trunca-
tion error is directly proportional to the magnetic field. The
error for a given step-size determined by Eq. (8) at a refer-
ence magnetic field, B¢, will be halved for a calculation
with B = B.t/2. However, by Eq. (8), the permitted step-size
with B = B..¢/21ina CH calculation will be double thatin the B¢
case, and the increase in the truncation error due to this larger
step size will be a factor of 2°. To avoid fluctuation in truncation
error at different magnetic fields, a scaling of the step-size with
respect to the magnetic field is performed by using

Bref %
Sscale(B)zs(Brefaéuan)( B ) > 9
where scq.(B) is the scaled step-size, s(Bief,0u,E,) is eval-
vated using Eq. (8), and B is the magnetic field that the
step-size is being sought at. Scaling with the fifth root is
selected to account for the possibility of the error not being
directly proportional to the magnetic field. Applying a fourth
or sixth power scaling causes only about a 4% difference
from the scaled step-size calculated by Eq. (9), which is
relatively small compared to a doubling of the step-size if
no scaling is used. The reference magnetic field and ¢6,, values
are chosen based on Fano test calculations which produce
accurate results. When this option is turned on, sye(B)
replaces the CH mode step-size restriction given in Eq. (8),
and effectively attempts to maintain the error of the numerical
method constant regardless of the strength of the B-field.

2.C. Adaptive integration algorithm

A downside of using 3-PI is a marked decrease in the
efficiency of the overall simulation. An improvement in
efficiency can be achieved by using an algorithm which
utilizes 1-PI and 3-PI methods, depending on the step-size.
The “Adaptive Integration” algorithm uses 1-PI whenever the
step-size from other constraints is < sy, evaluated with a
6, of 0.05, since this is faster and accurate for small steps.
Above smin, the 3-PI is used to achieve better accuracy and s
is capped at smax, evaluated with a ¢, of 0.2. The values for
the lower and upper ¢,, values are chosen on the basis of Fano
test results.

2.D. Magnetic field influence in SS mode

The SS mode in EGSnrc was originally introduced to deal
with boundary transitions and to improve the accuracy of
small steps. In a regular SS step, without a magnetic field, the
particle travels linearly in its initial direction of motion and
has an elastic scattering event at its final position to determine
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the resulting direction. In a magnetic field, an analytical
expression for charged particle transport in a magnetic field in
vacuum?” is used instead of applying an approximation to the
transport by using Egs. (2) and (6), and the linear transport
of the particle is bypassed. This method facilitates boundary

crossing and ensures nearly exact transport for the SS step.

2.E. Boundary crossing

Without a magnetic field, boundary crossing in EGSnrc
is performed using linear steps in the SS mode, the default
boundary crossing algorithm in EGSnrc. When a step-size, s,
larger than the shortest perpendicular distance to the nearest
boundary, #,erp, is to be taken within a distance of skin-depth
(set to three elastic mean free paths by default) to a boundary, a
howfar call is made to determine the distance to the boundary
in the initial direction of motion, dyr. If dyr is smaller than s,
the step is shortened and the boundary is crossed using linear
transport. In the presence of a magnetic field, the particle’s
trajectory will curve and the final transport may leave the
particle in the current region or farther in the new region than
intended. This can cause incorrect region transitions and can
lead to erroneous scoring. To properly transition the particle
in a magnetic field, a specialized boundary crossing algorithm
(BCA) is introduced, as shown in Fig. 2. This algorithm
applies only to the SS mode, and the PRESTA-I BCA option of
EGSnrc does not support magnetic fields at this time. When a
step-size to the next scatter, s,, larger than 7, and within
a skin-depth to a boundary is to be taken, the particle is
transported a distance fpep using the analytical expression
for charged particle transport in a magnetic field in vacuum
instead of performing a check using howfar. At the end of this
step, a new perpendicular distance to the nearest boundary,
Tperp2, 18 evaluated and the particle is transported further
by this distance, making the total step length to this point
8§2 = tperp + Iperp2. The process of recalculating #perp continues
until a boundary is reached or the allowed total step length is
found to be larger than s, to which the step-size is capped. A
boundary is reached when #pp, is found to be below a specified
cutoff value (encoded by the $BCA_lin_buffer macro with
a default value of 10 nm). Here a small linear step is then
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taken to transition into the next region, but the final direction
of motion is determined using the analytical expressions. In
the case when a region transition is not required, AXp is
applied to the position when |AXg| < fperp at the end of the
linear transport. Different cutoff values were tested using ion
chamber dose calculations. No effect on dose calculations is
found for values below 1x 10* nm. The conservative value of
10 nm is chosen to ensure accuracy since there is little effect
on the timing.

2.F. NE2571 ion chamber simulations

All ion chamber simulations were performed using the
EGSnrc Monte Carlo system with the egs_chamber?! appli-
cation. Variance reduction techniques are used to conserve
CPU time and all default parameters are maintained for
the simulations with the exception of using the NIST
bremsstrahlung cross sections. The photon and electron total
energy thresholds were set to 10 and 521 keV, respectively.

To be consistent with the measurement setup of Meijsing
et al.’> who used 2 ion chamber configurations, calculations
were performed in a delrin cylinder with a length of 6.9 cm
and diameter of 4.3 cm. A parallel 6 MV photon beam'?
(Elekta SLi25 spectrum®?) incoming from the negative z-
direction and a uniform magnetic field in the y-direction
is simulated throughout the phantom using the new EGSnrc
magnetic field package. Calculations, not presented here, with
a 6 MV Varian Linac spectrum revealed no sensitivity of the
final results to the choice of spectrum for the same energy.
In the first configuration, CI, the ion chamber has its central
axis perpendicular to both the magnetic field and the photon
beam, i.e., the chamber’s central axis lies in the x-direction.
In the second configuration, CII, the ion chamber remains
perpendicular to the magnetic field but is now parallel to
the photon beam, i.e., the long axis of the chamber is in
the z-direction. These geometrical configurations are shown
in Fig. 3. The NE2571 ion chamber model used for these
simulations has been previously described by La Russa et al.*?
With omission here of the stem geometry description, the
chamber consists of an active air volume with a length of
24.0 mm and a radius of 3.14 mm, a solid aluminium electrode

region 2 region 2 region 2
IS; =s1+ tperpZ gtperpz
e-F v
e-
_______ S1= tperp
tperp
region 1 region 1 region 1
(a) (c)

Fig. 2. Single scatter mode boundary crossing in the presence of magnetic fields. (a) An intended step larger than #per, is to be taken. Linear (dashed) and
magnetic field (solid) transport is shown. (b) The step-size is shortened to #perp and the particle is transported using analytical solutions for magnetic field
transport in vacuum. (c) A new fperp is calculated, the step-size is increased by this amount and the particle is transported further.
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Fig. 3. Geometrical set up of ion chamber simulations with an incoming
parallel 6 MV photon beam for configurations I and II (CI and CII). In
both configurations the magnetic field is in the y-direction. A simplified ion
chamber model is shown with the surrounding delrin build-up cap.

with a length of 20.5 mm and a radius of 0.5 mm, and a
graphite wall with a thickness of 0.36 mm. The conical tip on
the end of the chamber is also simulated.

The dose to the active volume of the chamber is scored
as a function of magnetic field strength, ranging from 0 to
2 T in increments of 0.15 T. The dose is normalized by the
dose obtained in the same geometry but in the absence of the
magnetic field. Note that the normalization is performed using
the original EGSnrc simulation package, which is defined
as the NuLL EGSnrc case. All dose values are calculated to
below 0.02% statistical uncertainty. The values for both CI and
CII configurations are compared to the experimental results
obtained by Meijsing et al.'> Testing is performed for the
1-PI and 3-PI with the new BCA and specialized SS mode
turned on.

Configuration I was used to determine the impact of the
magnetic field code on the simulation efficiency and timing.
The normalized efficiency (&norm = €,/€5) and normalized
time per history (¢norm =?5/?,) are reported for §,, = 0.02 and
0.2 for magnetic fields ranging from O to 3 T. Here ¢, and
t, represent the efficiency and time per history to complete
the simulation for the NuLL simulation (similarly €p and ¢p
are for the magnetic field case). The effect of §,, on &porm and
thorm 18 also studied for a 1.5 T magnetic field. All timing and
efficiency simulation are performed with 1.5x 107 histories on
a single cpu core.

2.G. Fano cavity test

The Fano theorem has been used as a strict test of Monte
Carlo algorithms. It states that as long as cross sections are
independent of density and charged particle equilibrium ex-
ists, the electron spectrum is also independent of density.>* To
perform the test for a Monte Carlo code, a cavity region with
a density 1000 times lower than the surrounding material®® is
used. In such tests, without a magnetic field, EGSnrc passes
at the 0.1% level.”® An alternative implementation of the Fano
test was introduced by Sempau and Andreo® in which the
photon beam is circumvented and a uniform intensity per unit
mass source of electrons is simulated in two semi-infinite
slabs of dense material with a gap of low density material
in-between. By using the reciprocity theorem, a thin source of
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electrons can be employed and the dose scored in the entire
gas region. This test demonstrated that, with careful selection
of transport parameters, the PENELOPE code passes the Fano
test near the 0.1% level with deviations as high as 0.4% for
certain configurations.*’

Bouchard and Bielajew®® have demonstrated that the
assumptions of the Fano cavity theorem are broken when
a magnetic field is introduced. Bouchard et al.?’ introduced
two alternative modifications to the Fano cavity test, either of
which makes it valid in magnetic fields. The two alternatives
are (1) using an isotropic uniform per unit mass source of
electrons and (2) applying a magnetic field that scales with
the mass density of the material. Pooter et al. implemented
the first variant of the Fano cavity test in the PENELOPE code
and observed variations near 1% for a 1.5 T magnetic field**
for 4 MeV initial electron energy.

The first version of the magnetic field Fano test is
implemented in the EGSnrc DOSRZnrc user code using the
Sempau and Andreo Fano test approach. Two cylindrical
geometries are simulated. In the first geometry (slab Fano
test), a low density gas slab of thickness d,,; is placed between
two slabs of the wall material each with thickness dyq) [see
Fig. 4(a)]. The entire cylinder has a radius R equal to 1.4 times
the CSDA range, Rcspa, of the initial kinetic energy of the
electrons in the gas. A thin, isotropic, uniform per unit mass
electron source is simulated at the central axis. In the second
geometry (ion chamber Fano test), Fig. 4(b), a gas cylinder of
radius rg,;, set to 0.35 cm, and thickness d g, is surrounded by
the wall material having a total thickness 7" and radius R;c,
such that the distance between the gas region and the outer
edges of the wall cylinder is at least dy,y. An isotropic uniform
per unit mass electron source is simulated everywhere in the
ion chamber Fano test geometry. In both geometries, dyaq is
set to be 1.4 times the Rcspa of the initial kinetic energy of the
electrons in the wall. Gas thickness, dgs, is simulated as 0.2
or 2 cm for the slab Fano test geometry, and 2 cm in the ion
chamber Fano test. Graphite is used as the simulation material,
with the wall having a density of 1.7 g cm™>. The gas density is
1000 times less but with the same cross sections including the
density effect as the wall. A magnetic field perpendicular to the
central axis of the cylinders is simulated in both geometries.
Electron kinetic energies of 0.01, 0.1, 1, and 10 MeV are
simulated. Statistical uncertainties for the 10 MeV cases are

£ dwail wall b dwan
dgas gas 4 gas I deas | |T
dwail wall wall E;s
R B3 Ric B3

FiG. 4. (a) Cross section through the slab Fano test geometry. The shaded
region in the center corresponds to the isotropic uniform per unit mass
electron source. (b) Cross-section through the cylindrical ion chamber (IC)
Fano test geometry. Electrons are generated isotropically on a per unit mass
basis throughout the geometry.
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below 0.09% and below 0.03% for all other energies. As
required by this version of the Fano test, all photons produced
in the simulation are terminated and their energy is deposited
locally. The electron total energy threshold is set to 512 keV
and secondary electrons are tracked as well. Dose, D, is scored
in the gas regions of both geometries, and the ratio, Q, of the
MC dose to the expected result, /E,, is defined as

0- D
" IE,’

where [ is the number of electrons per unit mass and E, is the
initial kinetic energy of the source electrons. In the ideal case,
QO would be equal to 1. For the slab Fano test geometry, the /
variable in Eq. (10) is substituted with

N
R27T(2dwallpwall + dgaspgas) ’

(10)

Y

Lgap =

where p, and p,, are the gas and wall densities and N is the
number of particle histories used for the calculation. For the
ion chamber Fano test geometry, the [ variable in Eq. (10) is:

N

2 2 2 :
pwallﬂ'(TRIC - dgasrgas) + pgasdgasrgasﬂ'

1 IC—= (12)

The slab Fano test is verified by calculating the degree
of agreement EGSnrc has with the theoretical Fano value
for the NuLL field case. The ESTEPE variable, which sets the
maximum fractional energy loss over a single CH or SS step,
is varied from 0.01 to 0.25 to determine any step-size effects.
To evaluate the effect of the magnetic field code, on both
integration methods, a magnetic field ranging in magnitude
from O to 5 T for 6, values of 0.02 and 0.2 is simulated
for the slab Fano test. Additionally, a study as a function
of 9, is performed for the 1.5 T case for both the slab
and ion chamber Fano tests. The magnetic field is simulated
perpendicular to the radial axis of the geometries as it was
found that simulations with the parallel case pass the test
more easily.

3. RESULTS AND DISCUSSION
3.A. Fano cavity test

Figure 5 shows the percent deviation of the MC calculated
Fano dose from the theoretical value for the NuLL field case as
a function of ESTEPE for the 0.2 and 2 cm thick gas region.
These simulations are run with the default XIMAX value and
with isotropically radiating electrons from the source region.
In all cases, deviations fall below the 0.1% threshold. The
ESTEPE = 0.25 case corresponds to the default EGSnrc setting,
i.e., no tuning of transport parameters is needed to pass. These
results are in agreement with Fano tests performed with ion
chambers in photon beams.?*3’

With the magnetic field on, Fig. 6 provides the percent
deviation from the theoretical Fano test result for the 0.2 cm
gas gap thickness for the 1-PI and 3-PI methods. At low
0, values, for both integration techniques, the results are
within the 0.1% range; however, large deviations are seen
in the 1-PI calculations at higher §,, values. The 3-PI provides
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FiG. 5. Percent deviation of the Monte Carlo calculated Fano test dose from
the theoretical value for the no magnetic field case as a function of the
ESTEPE parameter for (a) 0.2 cm gas gap and (b) 2 cm gas gap.

improved stability even to J,, values as high as 0.4. Figure 7
is the same study but for a 2 cm gas gap thickness. Again,
agreement on the order of 0.1% is seen at a 6,, of 0.02, but the
1-PIresults deviate from the expected results for the higher 6,,.
Variations in the 3-PI results are observed for §,, larger than
0.2; however, the differences are bounded by 0.25% for the
10 MeV case and 0.1% for the lower energies. The step-size
dependence observed in the 2 cm case can be attributed to an
increased number of particles having to be tracked to the outer
radius of the Fano test geometry in the gas.

The results for the ion chamber (IC) Fano test are given in
Fig. 8. The 3-PI results fall within 0.1% deviations from the
theoretical value, while the 1-PI calculations do not exceed
differences beyond 0.4%. These results are much better than
the slab Fano test results and demonstrate that not all Fano
test geometries are as rigorous a test of magnetic field Monte
Carlo codes.
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1-PI results are shown.
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Fig. 7. Same as Fig. 6 but with a 2 cm gas gap.

Figure 9 demonstrates the dependence of the Fano test
result on the magnitude of the magnetic field for the 0.2 and
2 cm gaps for a 1 MeV isotropic electron source. The 1-PI
results in large deviations throughout the magnetic field range
for a §,, value of 0.2. An increase in the difference is seen
for the 3-PI results at lower magnetic field values for a §,, of
0.2. A 6, of 0.1 eliminates the deviations. The variations at
the higher §,, are related to the improper scaling of the step-
size restriction as a function of magnetic field. Applying the
“Scaled ¢, algorithm with 1.5 T as the reference magnetic
field and using a 9,, of 0.2 results in very good agreement with
the Fano test. Turning on the scaled ¢, with or without the
adaptive integration algorithms gives agreement within 0.1%,
as seen in Fig. 9.

3.B. lon chamber simulations

Figures 10 and 11 provide the NE2571 cavity doses in
magnetic fields in the range of 0-2 T for configurations I and
I normalized by the nurLL EGsnrc cavity dose. Unless the
specific algorithm is indicated, the calculations are performed
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with the adaptive integration and scaled J, options turned
on (“Full algorithm”). The experimental data, marked with
diamonds, are from the wrok of Meijsing et al.'> At a §,, of
0.02 the two integration techniques agree with each other.
The 3-PI does not change with a 6,,= 0.2, which does not hold
true for the 1-PI. These findings are consistent with the Fano
test results, where the 1-PI was determined to be unstable at
higher ¢, values. From this, we determine that a ¢, of 0.2
is sufficiently stable for the 3-PI and use these setting for all
subsequent ion chamber calculations.

Reasonable agreement with experiment is seen up to
magnetic field values of 1.0 T, at which point a slight deviation
is observed. Meijsing et al.'> proposed that a tilt in the
incoming beam with respect to the magnetic field lines may
have caused a change in the ion chamber doses, but the authors
could not verify if a tilt was present. We confirm that a 3°
variation in the incoming beam results in deviations of the
normalized dose curve from the 0° case, and find that a +3°
degree tilt produces improved agreement with the experiment
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Fig. 10. Configuration I (see Fig. 3) NE2571 cavity dose as a function of
magnetic field strength normalized by the NuLL EGSnrc cavity dose. Experi-

mental data are from Meijsing et al. (Ref. 15).
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for both CI and CII geometries. Further, small variations,
within a few degrees, in the alignment of the ion chamber axis
with respect to the photon beam do not produce changes in
the dose response for a given magnetic field.

An additional unknown in the experimental setup is the
possible presence of air gaps around the graphite walls of
the chamber.*® High density media dampen the effect of the
deflection caused by the magnetic field, and a substitution with
a low density medium like air can have a noticeable effect on
the electron trajectories. The normalized ion chamber doses
are calculated for a uniform 0.5 or 1.0 mm air gap around the
walls of the ion chamber, including the conical tip, and are
presented in Figs. 12 and 13 where each of the cavity dose
curves as a function of magnetic field are normalized by the
NULL EGSnrc simulation (no B-field) with the corresponding
air gap around the chamber. In the NULL case, the introduction
of a 1.0 mm air gap causes a 0.2% increase for CI and less
than a 0.1% increase for CII. Variations on the order 1.0%
or lower are seen for both air gap sizes in the magnetic field
cases, with the 1.0 mm gap producing a more pronounced
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Fic. 12. Configuration I NE2571 cavity dose with air gaps around the wall of

the chamber as a function of magnetic field strength normalized by the NuLL
EGSnrc.
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effect. For CI, at magnetic fields below 1.0 T, the air gaps
produce an increase in the chamber response. In the range of
approximately 0.9—1.0 T, the effect of the air gap decreases and
a reduction in the dose is observed for higher magnetic fields.
This situation is reversed for CII, where an initial reduction in
the dose is seen with a subsequent increase. These effects are a
product of a balance of electrons being swept into or out of the
chamber’s sensitive volume as a function of magnetic field.

The complexity introduced by the magnetic field accen-
tuates experimental details that might otherwise appear to
be inconsequential. Very detailed experimental descriptions
are required to provide corresponding accurate Monte Carlo
results.

3.C. Timing studies

The computational penalties for running the magnetic field
code are explored. First, it is important to understand that an
underlying variation in the computational time can occur due
to changes in electron trajectories induced by the magnetic
field. The effect of the trajectory on the time is not explicitly
determined, but instead the effect of the various magnetic field
transport options and algorithms as a function of step-size and
magnetic field strength are evaluated.

Figure 14 provides the normalized efficiency and timing
for the CI NE2571 ion chamber in delrin geometry with a
1.5 T magnetic field for 1-PI and 3-PI methods as a function
of ¢,,. Since the ratio of the uncertainties for the 1.5 T and NuLL
simulations remains constant for all ¢,,, the normalized timing
is always a constant ratio to the corresponding efficiency for
the respective integration techniques. Due to the increased
computational complexity of the 3-PI method, the time for this
algorithm is notably higher than for the 1-PI method. A greater
difference in the normalized timing with reducing ¢, is seen
because of the increase in the number of steps taken. A low d,,
value such as 0.02 incurs a penalty in the range of 2-3 times
the NuLL EGSnrc case for both the timing and the efficiency
for either integration approaches. Consequently, the use of a
higher ¢, is desirable to reduce the timing cost. A ¢, above
0.1 achieves the majority of the reduction in timing increase.
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FiG. 14. Relative timing and efficiency for an NE2571 ion chamber in a delrin
phantom in CI in the presence of a 1.5 T magnetic field as a function of ¢,,.
Values are normalized by the same calculation without the magnetic field,
thorm = tB/to and Enorm = E0/EB-

Drawing from the ion chamber dose calculation and the Fano
test results, a 0,, of 0.2 is selected as the recommended value
for the 3-PI calculations. Based on this §,, a purely 3-PI
simulation at 1.5 T would take 56% longer to run with a
corresponding 36% drop in efficiency as compared to the NULL
field simulation.

The effect of the magnitude of the magnetic field on
the normalized timing and efficiency for the ion chamber
simulation is given in Fig. 15. The timing and the efficiency
have a strong dependence on the magnetic field for a §,, of
0.02. At a 3 T field, a threefold increase in the time is
incurred even for the 1-PI. Moving to a ¢, of 0.2 reduces
the dependence of the timing on the magnetic field. The
statistical uncertainty in the simulation is independent of the
choice of d, and is closely tied to the magnetic field used.
The uncertainty increases gradually by approximately 12%
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Fic. 15. Normalized (as in Fig. 14) timing and efficiency for an NE2571
ion chamber in a delrin phantom for §,, of 0.02 and 0.2 as a function of
magnetic field. Symbol meaning is maintained through (a)—(d). (a) and (c)
are normalized efficiency and (b) and (d) are normalized timing.

Medical Physics, Vol. 43, No. 7, July 2016

4455

between the 0 and 3 T case. The variation in the uncertainty
is likely related to an increased variability in track length
with increasing magnitude fields. To reduce the previously
quoted increase in time with the 3-PI method at a 6, of
0.2, the adaptive integration and scaled J,, algorithms are
also tested. The scaled ¢,, algorithm reduces the dependence
of the timing on the magnitude of the magnetic field. The
adaptive integration algorithm makes use of the best of the two
integration methods, since it applies the accuracy of the 3-PI
when needed and suffers only a 38% increase in simulation
time at higher magnetic fields while maintaining accuracy.

A timing comparison was also performed for a 10 x 10
X 6 cm® phantom with (3 mm)? voxels with DOSXYZnrc.
A 1.5 T magnetic field is aligned perpendicular to the beam
axis and directed along the negative z-direction. The entire
phantom is filled with water. In this case, the increase in the
computational time is 48% compared to the NuLL EGSnrc
simulation with ECUT set to 861 keV, range rejection applied
to electrons below 2 MeV, and a photon splitting factor of 10.
In the second test, the first 3 cm of the phantom is filled with
water and the rest with air. There is a 76% increase in the
simulation time compared to the nuLL EGSnrc simulation for
the same phantom with an ECUT of 611 keV. This difference
in the increase in the computation time is attributed to the
increased electron path length permitted in the air, which is
affected more by the step-size restrictions implemented in the
magnetic field code. Running on a single core of a 24 core Intel
Xeon E5-2680 v3 2.50 GHz CPU machine, the CI simulations
take approximately 6.3 s to achieve 2% uncertainty for the
NuLL case while a 1.5 T magnetic field simulation with the
adaptive integration and scaled ¢,, algorithms turned on with
a reference field of 1.5 T takes 9.4 s to obtain the same
uncertainty. A simulation with a (30 cm)? water phantom with
(3 mm)? voxels and a 4 x 4 cm? 6 MV photon beam coming
in from the negative-z direction on the same machine takes
30 min for the NULL case and 44 min for a 1.5 T magnetic field
in the y-direction (Adaptive Integration and Scaled ¢,, turned
on) to achieve 2% along the central axis.

4. CONCLUSION

Transport of charged particles in magnetic fields has been
implemented in the EGSnrc code for the use of high accuracy
ion chamber and phantom calculations. The extension code
can be implemented by including an additional set of macros
when compiling an application. This magnetic field extension
code has been validated by the Fano test as applied in a
magnetic field and has been found to agree with the expected
results at the 0.1% level. The increase in the computational
time due to running the code was found to be approximately
38% for ion chamber simulations and between 45% and 80%
for a (3 mm)? phantom geometry. The increase in simulation
time is found to be geometry dependent. It is well below
the increase which would be incurred by the use of small
step-sizes as in previous implementations.

NE2571 ion chamber simulations are performed and
agreement with experimental data'” is found at magnetic fields
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below 1 T. We have found that the air gaps around the chamber
can induce variations in the normalized dose response on the
order 1%. The tilt of the incoming beam with respect to the
magnetic field can also influence the ion chamber reading.
Detailed experimental descriptions are required to adequately
simulate all of the physical effects induced by the magnetic
field.

This efficient incorporation of the effect of the magnetic
field into the EGSnrc code can now be used for determining
correction factors for ion chamber measurement in hybrid
MRI-radiotherapy systems.
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APPENDIX A: NORMALIZATION OF FINAL
DIRECTION VECTOR

Once Aiig is determined, it must be added to the direction of
motion at the end of the CH step and the unit vector properties
of the direction of motion must be maintained. Previously
proposed normalization techniques relied on adding the effect
of the magnetic field and normalizing the resulting vector to
unity, as in the following equation:

PSS L (A1)
|dicn + Aig|

where, iy is the final direction of motion and #icy is the
direction of motion at the end of the CH step. In this
approach, components of the direction vector which should
not be influenced by the magnetic field are scaled down in
magnitude. The resulting effect is observed in Fig. 16(a),
where motion in vacuum of a 0.5 MeV electron initially
directed at a 45° angle with respect to the z-axis is tracked in
a 0.2 T magnetic field oriented in the z-direction. Deviations
from the analytical solution are observed for ¢, values as
low as 0.02, and a noticeable change in the amplitude of
oscillation due to the normalization problem is seen for
0, =0.1. Calculations with ¢, =0.2 are not shown as the z-
component of the direction became insignificant and particles
traveled in perpetual circular orbits, i.e., trajectories did not
reach past 10 cm depth along the z-axis.

To conserve the momentum in the direction parallel to the
magnetic field, the components of the direction vector parallel
and perpendicular to the magnetic field are defined as
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Fig. 16. x-axis as a function of z-axis position for a 0.5 MeV electron in
a 0.2 T magnetic in z-direction in a near vacuum. The black line is the
analytical solution. (a) 1-PI normalized with Eq. (A1), (b) as (a) but with
Eq. (A4), (c) 3-PI normalized with Eq. (A1), (d) as (c) but with Eq. (A4).

iy =tcy- B, (A2)

iy, =a-u, (A3)

where B, if|, and if, are the unit direction of the magnetic
field, and the parallel and perpendicular components of the
direction of motion, respectively. The effect of the magnetic
field is obtained by using the individual magnitudes of these
two components as in Eq. (A4),

5 i, +Aig
Ur=u + = |U.|. A4
r=uj |ul+AuB|| i (A4)

This normalization is applied in Fig. 16(b) for the same energy
and configuration as before. Here the ¢, =(0.02 CH solution
follows the analytical solution perfectly. Slight deviations are
observed for 6, =0.2. Using 3-PI, the ¢,, = 0.2 solution also
maintains adherence to the analytical propagation [Fig. 16(d)].
Further, using 3-PI appears to overcome the issues presented
by using Eq. (A1) [Fig. 16(c)], but the appropriate normaliza-
tion technique is applied for increased stability in the solution.

The component normalization technique provides
improved tracking of particles in vacuum, and in low density
media. Coupled to the higher order integration technique
a larger value for the ¢, parameter is permissible, which
corresponds to larger step-sizes and shorter computational
times.

APPENDIX B: CONDENSED HISTORY
tperp RESTRICTION

Since boundary crossing is mediated by SS, the CH mode
cannot cause regional transitions. Without the magnetic field
code, the CH step is restricted to a maximum value of 7perp.
If a magnetic field is present and Eq. (6) is used to adjust
the position at the end of the CH step, the particle can step
into an incorrect region even if the CH total step length
was just fper, [see Fig. 17(a)]. To maintain proper boundary
transitions, it is important that when a magnetic field is present
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Fig. 17. A condensed history step equal to #perp in a magnetic field (a). The
influence of the magnetic field causes the particle to fall into region two.
Restricting the step-size using Eq. (B3) ensure the final position is in region
one (b).

the displacement caused by the magnetic field, AXp, is added
to the step length taken in the CH calculation, ¢cy, and this
must be bounded to f,erp, as in Fig. 17(b).

This is encoded as

tperp:tCH+|A)_C)B|- B1)

Using Eq. (6) and s =#cy, Eq. (B1) can be rewritten as
t .
tperpthH‘*'%r]lAuBL (B2)

Here, the value of 77 is estimated by using the ESTEPE variable,
which controls the maximal fractional energy loss along a
step in EGSnrc. Equation (3) is used to evaluate Aup and
substitution into Eq. (B2) gives

2

fperp = fCH+ 2y % 5(0)x B|. (B3)
This is a quadratic equation which can be solved for 7y values
that satisfy the expression. The maximum value is used as
the upper bound for the CH mode restriction. By using this
algorithm, proper boundary transitions are maintained and no
errors in scoring are encountered. Since the solution to the
quadratic equation does not include any variation in velocity
or direction of motion during the step, it is possible that the
3-PI results in a total step larger than ¢cy. To avoid this, the
magnitude of the change in position induced by the magnetic
field is calculated and compared to the current #per,, value, and
the 1-PI calculation is used if e is found to be smaller. This
type of event occurs fairly rarely and does not influence the
overall dose calculation results.
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