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A new electron transport algorithm for use with electron Monte Carlo transport codes is presented. Its components are: a 
path-length correction (PLC) algorithm which is based on the multiple scattering theory of Molirre and which takes into account the 
differences between the straight path length and the total curved path length for each electron step; a lateral correlation algorithm 
(LCA) which takes into account lateral transport; and a boundary crossing algorithm (BCA) which ensures that electrons are 
transported accurately in the vicinity of interfaces. The algorithm has been implemented in the EGS4 code system and a variety of 
tests validating'the algorithms are presented. In its standard configuration, use of this algorithm will allow the inexperienced user to 
obtain reliable results from the EGS Monte Carlo code without having to do a detailed study of the electron transport parameters. In 
many situations, substantial savings in computing time may be realized in comparison to the present EGS algorithm. The 
developments described in this report may be adapted to other electron transport codes where many of the same conclusions may be 
drawn. 

1. Introduction 

All electron Monte Carlo transport codes which ac- 
curately simulate electron transport demonstrate a 
strong dependence on electron step-size in the energy 
region up to 10 or  20 MeV [1-3]. Generally it is found 
that reducing the electron step-size causes the results to 
converge to the correct values while the computing time 
increases rapidly, in proportion to the inverse of the 
step-size. One is therefore faced either with a tedious 
study to determine the optimum step-size or with using 
a sufficiently small step-size to " b e  sure" of getting the 
correct results while using a great deal of computing 
time. 

The purpose of this work was to reduce both the 
user's time and the computing time required to do 
accurate electron transport calculations. One goal was 
to develop an electron transport algorithm which auto- 
matically selects the optimum step-size, thereby saving 
the user's time. The second goal was to increase com- 
puting efficiency by developing techniques which allow 
larger step-sizes to be used accurately. We have devel- 
oped a new Monte Carlo electron-transport algorithm 
called PRESTA, an acronym that stands for Parameter 
Reduced Electron-Step Transport  Algorithm. The al- 
gorithm consists of several interrelated components. 

The first of these is the incorporation of a path-length 
correction (PLC) algorithm that correctly accounts for 
the difference between the lengths of the electron's 
curved path and its straight-line path. This curvature of 

the electron's path is due to elastic scattering from the 
nuclei and atomic electrons of the medium in which the 
transport takes place (see fig. 1). Some electron Monte 
Carlo codes do not include such a correction (e.g. 
E T R A N  based codes or the codes of Nahum [2] or 
Andreo [4]). They overcome this shortcoming by using 
such small steps that there is little PLC required. Al- 
though EGS does incorporate a PLC algorithm, it is 
based upon the Fermi-Eyges  multiple scattering theory 
[5] and this approach will be shown to be inadequate for 
accurate work. Rather, a new PLC based upon the 
Moli6re scattering theory [6,7] is presented. This pro- 
vides a logical internal consistency for our implementa- 
tion of the algorithm in the EGS code since the Moli6re 
theory is used for the selection of the multiple scattering 

t 

s ~ straight line path 

t - electron's curved path 

PLC - tls - I 

Fig. 1. The PLC (path-length correction) defined as t / s -  1 
accounts for the difference in length for each electron step 
between the electron's total curved path t, and the straight-line 

path s, which is used in the transport model. 
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angle in EGS. However, the algorithm should enhance 
any electron Monte Carlo simulation. We show that the 
use of the Molirre multiple scattering theory coupled to 
the new PLC is virtually independent of the step-size in 
the domain in which it is valid (no energy loss, trans- 
port  in infinite, homogeneous media, step-sizes within 
the validity criteria of the Moli~re theory). In  conjunc- 
tion with the other elements in the PRESTA algorithm, 
we also show it is accurate in realistic calculations. 

The second ingredient in the PRESTA algorithm is 
the incorpdration of a lateral correlation algorithm 
(LCA) that performs a translation perpendicular to the 
direction of motion during an electron transport step 
(see fig. 2). This becomes essential because the new PLC 
algorithm allows such large electron steps that this 
lateral displacement becomes significant. Tests of the 
LCA under idealized conditions show that artefacts 
associated with step-size dependence of lateral transport 
are nearly eliminated. 

The final ingredient required for the PRESTA al- 
gorithm is an efficient and reliable method for treating 
the electron transport near the interface between re- 
gions. This requirement has been recognized before [8] 
but  we expand on this original theme. We present a 
general solution for our implementation in the EGS4 
system in which electrons are forced to stop at 
boundaries. However, the concepts involved could be 
applied to other codes which can have different al- 
gorithms for changing media. Fig. 3 shows an electron 
step taking place in one medium adjacent to another. 

NO LATERAL CORRELATION ALGORITHM 
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Fig. 2. When no lateral displacements are taken into account 
(upper trajectory) the curved step t is considered to end at the 
same point as the straight step in the original direction of 
motion. In EGS the multiple scattering angle 8 is applied at 
the end of the step. If lateral displacements are taken into 
account (lower trajectory), there is a lateral deflection angle q~ 
which is applied at the beginning of the step. The multiple 
scattering angle 9 is still applied with respect to the initial 
direction. The PLC is still defined in terms of the original 
straight-line path-length s and thus s', the actual straight-line 
path-length traversed, is increased when lateral displacements 

are included. 

NO BOUNDARY CROSSING ALGORITHM 

Liqese port ions ~mlssed" 
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Fig. 3. In current algorithms, if a long step is taken near a 
boundary, the algorithm erroneously treats the step as occur- 
ring entirely on one side of the boundary whereas a certain 
subset of the electrons being simulated would actually cross the 
boundary. In many situations this causes no significant prob- 
lems but in some it is critical. To solve the problem in general 

requires taking short steps near the boundary. 

All condensed history electron transport algorithms 
move the electrons in a straight line for each step. 
Whether or not the codes take it into account, the 
electron's path is actually curved. For very short steps 
the difference between the straight path and the curved 
path is negligible, but  for large steps it can be signifi- 
cant. Part of this curved path may take place in the 
other region. However, current algorithms must assume 
that all of the curved path takes place in the region 
containing the endpoints of the straight-line path. As 
indicated, the solution is to shorten the electron path in 
the vicinity of the interface and actually track into the 
other region that subset of electron histories which 
would have gone there. We describe in detail how this 
"boundary  crossing algorithm" can be incorporated in 
a transport code. 

Far away from boundaries the simulation of large 
electron steps becomes possible, and the PRESTA al- 
gorithm must accurately account for energy loss during 
the course of this long step. We demonstrate that the 
inclusion of energy loss introduces no new step-size 
dependence as long as the energy is taken to be that at 
the mid-point of the step. 

Finally, we apply PRESTA to some realistic prob- 
lems that highlight the development of the various 
components. We compare these results to those ob- 
tained using other, simpler electron transport al- 
gorithms and contrast the amount  of computing time 
used by the various methods. 

In the final section we summarize our results and 
indicate which areas need attention for further improve- 
ment. In this report we present only an overview of our 
results. The detailed derivations and notes on imple- 
mentat ion in EGS4 are given in an internal report [9]. 



A.F. Bielajew, D. W.O. Rogers / AIgorithm PR ESTA for electron Monte Carlo transport 167 

2. A new path-length correction theory 

In this section we propose a new PLC theory, discuss 
its limitations and demonstrate the step-size indepen- 
dence of this theory under idealized conditions. 

2.1. The Molikre theol. 

First, we establish a notation which is consistent 
with that found in the EGS manuals [10,11]. We start 
with the following set of parameters of the Moli~re 
theory: 

I2 o = b d / O  2, (2.1) 

X~. = XLt /E2f l  ", (2.2) 

where b e and X~r are constants that depend only on the 
medium in which the transport takes place *, fl is the 
ratio of the magnitude of the electron's velocity in units 
of the speed.of light, E is the total energy (kinetic plus 
rest mass) of the electron and t is the total curved 
path-length of the electron step. f20 can be interpreted 
as the number  of atomic collisions that contribute to the 
scattering and Moh~re considered his theory valid for 
12 o > 20. 

The Moh~re multiple scattering angle distribution is 
given by: 

f ( O ) O  dO = . t ' , ( r  d e ,  (2.3) 

where 0, the scattering angle, and th, the "reduced" 
angle are related by 

q, = 0 / x ~  B ~/2, (2.4)  

where 

B - l n  B = b = l n  fa o, (2.5) 

defines both B and b. From eq. (2.5) we see that we 
must restrict fa o > e or else B is a double-valued func- 
tion of b. The Moh~re distribution can be expanded in 
a power series in l / B ,  

/I,(~) f~2~(r 
fr(q~) = f t 0 ' ( 0  ) + - -  + - -  + " " ,  (2.6) 

B B 2 

where 

f(0,(q~) = 2e-C- (2.7) 

and f m  and f(2) are given in numerical form by Bethe 

* For monoatomic substances 

Zt/3( Z + 1) t h~ 6702.33O 
M 1 +0.000178Z 2 ( c m - l ) '  

/ z ( z+  
X~ = 0.39612 v M 1)# (MeV cm- l /z ) ,  

where #=density in g cm -3, Z=atomic number, M= 
atomic weight in g/mole. For polyatomic substances, similar 
expressions are given by Nelson et al. [11]. 

(1953). The expansion expressed by eq. (2.6) is strictly 
valid only for B > 1 (I2 o > e) since the ft,> 's are of the 
order unity or less. This restriction imposes an absolute 
lower hmit on the step-size, somewhat smaller than that 
proposed by Mohrre 's  $2 o > 20 (B > 4.5). Using the 
smaller criterion, we see from eq. (2.1) that the mini- 
mum step-size is given by 

t r a i n  = efl2/bc . (2.8) 

0/min/fl 2 is approximately 4 • 10 -4 gem -2 for H 2 0  (p 
is the density). For  other materials the relative depen- 
dence is approximately governed by a 1 / Z  factor, where 
Z is the average atomic number. This is an exceedingly 
small number  for many practical purposes (see fig. 4). 

An upper hmit  on the electron step-length has been 
derived by Bethe [12] in his classic treatment of the 
Mob&re theory. Bethe has shown that the Mofi~re the- 
ory, initially constructed as a small angle theory, and 
the theory of Goudsmit  and Saunderson [13], which 
does not rely on a small angle approximation, are nearly 
equivalent as long as the following condition is satis- 
fied: 

X 2 ( t ) B ( t )  < I. (2.9) 

xcB  is interpreted approximately as the The quantity 2 
mean-square scattering angle. Using eq. (2.9) along with 
eqs. (2.1), (2.2) and (2.5) allows us, after some manipu- 
lation, to write an equation for the maximum step- 
length, tm~, 

e2f14 (2.10) 
t m a x  ~ 9 x:.c ln( boe  2/xL ) 
tm~ and tmin are plotted in fig. 4 for water. We note 
that tma x and tmi n become equal for an energy of about 
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~inet ic  energy (NeV) 
Fig. 4. The maximum (Bethe limit) and minimum (12o >e) 
step-size criteria for the Molirre theory in water. Minimum and 
maximum step-sizes converge at about 230 eV in this case. The 
CSDA range (dashed line) is also shown. It becomes more 

restrictive than tmu at about 3 MeV in water. 
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230' eV. This number  can be derived by equating eqs. 
(2.8) and (2.10) and solving for the emergy. The result is 
that the lowest kinetic energy allowed by the Moli~re 
theory is approximately 

exc2 (2.11) 
Ek.mln = 2be( moc2 ) , 

where (moc z) is the rest mass energy of the electron. 
Ek.~,  is almost independent of material. It must be 
recognized that Ek.mi n is an underestimate since low 

r 

energy atomic processes are not fully modelled either by 
the Moli~re theory or by current condensed history 
Monte Carlo codes. The upper limit tm~ , varies in the 
same fashion as train for different materials, roughly by 
a relative 1 / Z  factor. Fig. 4 also shows the CSDA range 
[14] in water. The Moli~re flaeory does not include 
energy loss and the CSDA range was plotted to show an 
upper limit on where energy-loss physics would be 
expected to provide the more restrictive upper bound. 
For water this occurs at about 3 MeV. 

The value of tmi n for water is plotted versus electron 
kinetic energy in fig. 5 where the step-size for various 
values of Estep~ are also shown. (E~t~  is the maximum 
fractional energy loss per electron step due to continu- 
ous processes. It is discussed in detail by Rogers [3]). 
This plot can be interpreted as follows: if one tries to 
use too low a value of Estep~ one may enter the region 
where the lower limit of the Molirre theory is violated. 
We do not know exactly how other codes handle very 
short steps, however, for step sizes below train, n o  multi- 
ple scattering is performed with EGS, for lack of a 
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1 0  - 4  
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Fig. 5. Total step-size in water, t, as a function of electron 
kinetic energy for various values of E~tCp ~, the maximum 
fractional energy loss per electron step due to continuous 
processes. Also shown is the value of the minimum step size for 
which multiple scattering theory holds, train, as a function of 
energy (so for example, no multiple scattering would be done 

at energies below about 500 keV for Es,ew = 0.1%). 

theory to describe it. The default EGS value for tmi" is 
chosen to be 120 = 1, not e as in the present case. An 
extrapolation is performed below 120 = e in the default 
EGS version to relate B and 120 since eq. (2.5) is only 
valid above 120 = e. This " turn ing  off multiple scatter- 
ing" can lead to remarkable artefacts in calculated 
results where step-size restrictions below train ale im- 
posed [3,8]. The PRESTA algorithm does not allow a 
user to violate the min imum step-size limit by choosing 
too low a value for E.~t~pe. 

2.2. The basic path-length correction theo.rv 

In the development of the new PLC theory that 
follows, we use only the first two terms in the Moli~re 
expansion of eq. (2.6) and we work to order 1lB. Bethe 
[12] has discussed the consequences of neglecting the 
second order term and we have found that the inclusion 
of the f~2) and 1/B 2 terms offers no improvement to 
the PLC. For the sake of simplicity, we leave them out. 

The total curved path of an electron step, t, and the 
average straight-line distance of the step in the direction 
of motion at the beginning of the step, s (see figs. 1,2), 
are related by the following equation, attributed to 
Lewis [15]: 

s = f0tdt'(cos O(t')) ,  (2.12) 

where the average value, ( ) ,  denotes an average com- 
puted with any multiple scattering theory. Berger [16] 
has proposed the following approximation to eq. (2.12), 

s = �89 + cos O(t)) ,  (2.13) 

where the multiple scattering angle is that which is 
selected from the multiple scattering distribution for the 
electron step. We have verified that eq. (2.13), when 0 is 
selected from the Moli~re distribution, provides on 
average, excellent results in addition to faster computa- 
tional speed per step compared to the PLC we present 
below. Yet, we do not use this method for several 
reasons. First, for a given t eq. (2.13) produces a 
straggling distribution of s values about its correct 
mean value. This straggling component appears to be 
overestimated. Secondly, this straggling leads to in- 
creased variation of quantities dependent on the PLC. 
This offsets the advantage of computational speed per 
step. For these reasons we have constructed a PLC 
using eq. (2.12). 

Equation (2.12) is difficult to use directly with the 
Moli~re distribution and we have found than an expan- 
sion to 4th order in 0 is adequate. Therefore, we ap- 
proximate 

s = t -  �89 + ~fotdt '(O4(t ')) .  (2.14) 

This expression up to second order in 0 has been 
proposed by Yang [17] and we have found that the 



A.F. Bielajew, D.W.O. Rogers / Algorithm P R E S T A  for electron Monte Carlo transport 169 

inclusion of the 0 4 term offers a small but  noticeable 
improvement.  Since this correction is small and the 
Moli&e distribution is dominated by the f(m term, we 
do not include the f(t)  term in the 04 integral. 

In Bethe's treatment of the Moli&e theory [12], he 
derived a correction of the form (s in0/0)  t/2 that should 
multiply the Moli&e distribution to correct it for large- 
angle scattering. By expanding this factor to order 04 
and substituting the Moli&e expansion function as de- 
scribed we obtain 

t=s+ �89  dt'x~B 1 zxcB) 

i fo '-/X:Bdx[(x_ 1) - 2)] 

x/"'(x)}, (2.15) 
where the following relations were used: 

fo (0) = n!(x~B) "+', (2.16) 

f:dOO2"+ 'fu~( O ) 
n + 1 2/ 2 n 

= �89 fo" X+Bdxx / " ' ( x ) ,  (2.17) 

x --- +2. (2 .18)  

In eq. (2.16) we may integrate beyond the maximum 
physical angle, 0 = ~r, with very little error. The result 
follows directly from the substitution of the Gaussian 
term in eq. (2.7). In eq. (2.17), however, we must 
terminate the integration at 0 = ~r or else the asymptotic 
Rutherford scattering form of f t l )  

2 
f~l>< h ---, -- (2.19) ~,~o~ ~b 4" 

produces spurious infinities that result from the small- 
angle approximation in the analysis. 

Finally, as stated previously, the Moli('re theory is 
not well-defined for t < tmi n. Therefore, for t > train,  we 
approximate 

-) 
X~.c 2 l [  t , , (  1 ,  

t = S + 4---~-fl4 tmin + 2 "t m i n d t X ~ ' B  ~ 1 -  zx~'B 

1 [,,2/X~B. f,, 
§  ~  

X f ( l )  ( X ) )  (2.20a) 

and for t _< tmi  n, 

t = s. (2.20b) 

The extra term in eq. (2.20a) can be derived by assum- 
ing that the correction comes entirely from the f~0~ 
term with B set equal to unity for t < tmi  n. While the 
inclusion of this term is not particularly well motivated 

physically it was found to improve the consistency of 
the PLC at low energies and small step sizes. 

Eq. (2.20) constitutes the new PLC theory. Given a 
value of t, s is predicted directly. While it is not 
intrinsically complicated, the recasting of this equation 
into a form suitable for rapid calculation involves much 
detail and is left for an internal report [9]. 

2.3. Results of the new PLC under idealized conditions 

In fig. 6 we have plotted the new PLC, i.e. ( t /s  - 1), 
in water versus the electron kinetic energy, E k for 
various step-sizes as determined by the expression t = 
Est,p c Ek/Sco I ( E k ), where the unrestricted collision stop- 
ping power, Scol, has been obtained from Berger and 
Seltzer [14] and Estcp c is the fractional electron energy 
loss per step due to collision processes. These results do 
not include the effect of energy loss in the step although 
the final PRESTA algorithm takes this into account. We 
have also shown the PLC for the maximum step-size, 
tmax, which is almost constant at about 0.28. Again, we 
see that the range (here shown as the 100% curve, i.e. 
approximated by Ek/Scol) becomes more restrictive 
above about 3 MeV. Below this energy, tm~ , becomes 
the more restrictive upper bound. However, energy losses 
of at least 28% are allowed at low energies. The "level-  
ling off" of the PLC at low energies reflects the fact that 
the stopping power is increasing for lower energy roughly 
in proportion to the increased PLC. 

A fair and unambiguous test of the stability of the 
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Fig. 6. The PLC versus electron kinetic energy for various 
fractional energy losses per electron step in water. Also shown 
is the PLC for step-sizes corresponding to tma x (eq. 2.10). The 
tm~., restriction allows an energy loss of up to 28~ for low 
energies increasing to 100% for energies above 3 MeV. For low 
energies the PLC is approximately equal to the fractional 
energy loss. These results do not include the energy loss 

corrections (discussed in section 4). 
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M6li~re theory and the new PLC can be done by 
"turning off" any of  the physical processes which might 
obscure the interpretation. To this end we turn off, for 
the moment,  all continuous and discrete energy loss 
processes and consider transport in an infinite, homoge- 
neous medium (water for the present consideration). 
Here, and elsewhere, we use the EGS4 code system for 
our calculations although the tests are designed to ex- 
amine the various new algorithms rather than the origi- 
nal system. We start the particle off  in a certain direc- 
tion (which ~ve call the z-direction) and allow a trans- 
port step equal in step-size to tm~ tO Occur and calcu- 
late the average straight-line distance in the original 
direction of  motion, <z>l.  We then repeat this study for 
two steps of  size tmax//2, three steps of  size tma~/3, etc. 
We note that for the single step, S(tma~) = ( z>t  is 
calculated analytically from eq .  (2.20) and does not 
depend on the selection of the multiple scattering angle 

which, in EGS,  is determined at the end of the step 
(consult fig. 1). For the other fractions 

) ( z > ~ = s ( t m ~ / N )  1+ F~ cos ~.,, (2.21) 
n - - 1  

where ~ , , ,  is the angle made with the z-axis after the 
nth step and N is the total number of  steps. 0.,, can be 
related to the multiple scattering angle of the previous 
step. These multiple scattering angles are selected from 
the Moli6re distributions and consequently (Z>N de- 
pends both on the PLC and the Moli~re scattering angle 
for N > 1. If the PLC and the Molibre theory are both 
physically consistent, then < z > s should be independent of 
N, or equivalently, step-size independent. 

In fig. 7 we demonstrate the stability of <Z>N in 
water for 10 MeV, 1 MeV, 100 keV and 10 keV elec- 
trons. We also demonstrate the effect of turning off  the 
PLC (setting t = s for each step) and we also show the 
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Fig. 7. A test of the PLC algorithm vs other algorithms. The average straight-line distance in water in the original direction of motion 
after a total curved path-length of tmax, as a function of 1/N, the inverse of the number of steps taken. Energy loss is not included in 
the calculations. The values of N that would give individual curved path-lengths equal to the CSDA range and/or a 20% E,,~p~ are 

shown, as are the corresponding values for steps producing D 0 = e and 20 for the 10 keV case. 
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results using the Fermi-Eyges-Yang PLC, the standard 
PLC in EGS. The new PLC (labelled PRESTA) shows 
excellent step-size stability. The NO PLC cases exhibit 
large overestimates which could have been anticipated 
from the magnitude of the PLC depicted in fig. 6. The 
Fermi-Egyes-Yang PLC appears to underestimate by 
approximately the same amount. Thus, the Fermi- 
Eyges-Yang theory calculates too much PLC for a 
given step-size. In every case, however, all these meth- 
ods converge to the same values for the smaller step-sizes 
since the path-length correction tends to zero for small 
step-sizes. 

Some specific comments need to be made, however. 
In th~ 10 MeV case, we show the value of N corre- 
sponding to steps equal to the CSDA range [14]. Thus, 
the larger step-sizes would exceed this range if energy 
loss were incorporated. Keeping this in mind, we con- 
clude that PLC's becomes less important at higher 
energies as is also demonstrated by figure 6. However, 
at 10 MeV the correction still can be of the order of 
10% for very large steps with the Fermi-Eyges-Yang 
PLC performing somewhat better than the NO PLC 
case. At lower energies the NO PLC cases exhibit some 
improvement over the Fermi-Eyges-Yang PLC but the 
discrepancies are still substantial for large step-sizes. 
These figures are plotted in terms of steps which are a 
fraction of tma x, the relevant parameter in the context 
of the theory. However, to tie this to the more com- 
monly used concept of fractional energy loss per step, 
we have indicated on each graph the value of 1 / N  
which would produce a 20% energy loss in each electron 
step (if energy loss were included). For the 10 keV case 
we have also indicated the step-size corresponding to 
Moli~re's lower limit criterion, ~0 = 20, as well as the 
mathematical limit, t 0  = e, described earlier. It appears 
that the Molirre lower limit is somewhat too conserva- 
tive and we shall assume that the lower mathematical 
limit is acceptable. There is some evidence that the new 
PLC is breaking down slightly near this lower limit. 

We have also studied the stability of the PLC for 
other materials and observe no degradation for high or 
low-Z materials. 

3. The lateral correlation algorithm 

As discussed in the introduction, most electron 
Monte Carlo codes do not account for lateral transport 
during the course of a transport step (see fig. 2). How- 
ever, by breaking the transport history into small steps 
and deflecting the particle at the end of each transport 
step, one effectively accomplishes the lateral transport 
of an electron. Most codes must use small steps to 
overcome the lack of path-length corrections and hence 
the lack of lateral transport during a step has not been a 
problem. Since we can use large electron steps with the 

new PLC, it is necessary to include a method that 
accounts for the lateral deflection during the course of 
each step if we wish to obtain step-size independence of 
physical results that may depend on lateral transport. 

Berger [16] has proposed a method to account for 
this lateral transport. Neglecting his straggling term 
which provides fluctuations about mean values, we write 
the deflections along the two orthogonal directions per- 
pendicular to the offginal direction, as 

x = ~t sin 0 cos a, (3.1a) 

y = ~t sin 0 sin a, (3.1b) 

where we have assumed an initial position at the origin 
and an initial direction along the z-axis and a is an 
azimuthal angle selected randomly over the range 0 _< a 
< 2~r. However, x and y are distributed quantities and 
this follows from their direct connection to the multiple 
scattering angle, 0. 

It should be noted that eq. (3.1) cannot be derived 
directly from the Fermi-Eyges [5] multiple scattering 
theory. Rather, one can derive, in the limit of small 
deflections and small energy losses, that x = �89 cos a, 
y = �89 sin a. One makes the extrapolation to large 
angles by replacing s by t and 0 by sin 0. Physically, 
this argument is sound because t, not s, is the effective 
thickness of material the electron travels through and 
sin 0 rather than 0 obeys the intuitive expectation of 
reaching a maximum at ~r/2 and a minimum at ~r. 
Although a straggling term is necessary to describe the 
physics completely, we have not adopted the one pro- 
posed by Berger [16]. Its inclusion appeared to have a 
deleterious effect on the tests we have applied to it. We 
can only speculate on the reasons for this. However, 
there is a need for further research in this area. We call 
eq. (3.1) the lateral correlation algorithm (LCA) because 
the size of the lateral deflection is correlated with the 
multiple scattefin'nLangle, 0. Additionally, we set the 

upper limit X/t 2 - s  2 on the lateral deflection x ~ + y  -~ . 
This prevents the unphysical circumstance of having s, 
the straight-line distance between the electron step end- 
points, exceed t, the total curved path. As discussed 
below, we do not invoke the LCA whenever a particle is 
closer than the total curved path-length t from any 
boundary since otherwise the LCA could cause the 
particle to cross the boundary and it would be computa- 
tionally expensive to check for this at every step. 

Again, to test eq. (3.1) fairly and unambiguously we 
turn off all energy-loss mechanisms and consider elec- 
tron transport in an infinite, unbounded medium. Ini- 
tially, we allow a transport step of size tm~ , to Occur 
and we use eq. (3.1) to specify the lateral correlation. 
We then determine the average perpendicular direction, 
( r ) l ,  from the line along the original direction of 
motion. Then, we repeat the calculation for two steps of 
size tm~,/2, three steps of size tm~/3, etc. Again, if the 
multiple scattering distribution and the LCA are physi- 
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in the Introduction, if the steps adjacent to a boundary 
are too large, then various types of artefacts can occur. 
We have seen in fig. 3 an example of how the current 
EGS algorithm treats an electron step near a boundary. 
Most Monte Carlo codes allow long steps adjacent to a 
boundary between two regions when part of the total 
curved path can actually take place physically in the 
region across the boundary. Nonetheless they treat the 
transport step as if it occurred entirely in the region that 
contains the endpoints of the step, neglecting the contri- 
bution to adjacent regions. This can lead to severe 
problems, especially if there is a significant material or 
density change at the boundary. 

To circumvent this problem, one must shorten the 
electron steps in the vicinity of an interface to ensure 
that electrons which may cross the boundary actually 
have an opportunity to do so. To  this end, we limit the 
total curved path of the transport step to the minimum 
of tm~x and tperp, where tperp is the smallest perpendicu- 
lar distance to any boundary and tma.~ is given by eq. 
(2.10). For steps of this kind, since no part of the total 
curved path can take place in any other region, the 
electron can be considered to be in an infinite medium. 
We can only allow this truncation to occur so far, 
otherwise the electron would never cross the boundary 
unless it was coming at it exactly normally. This trunca- 
tion is not allowed to reduce the step below train where 

t~nin = fmintmin. (5.1) 

The quantity fmi, is a number greater than or equal to 
unity and /min is given by eq. (2.8). For maximum 
efficiency we equate / ' i n  tO lma x for the lowest energy 
electron that can be transported as defined by the 
parameter Ecru, which includes the rest mass [10,11]. 
Using eqs. (5.1), (2.8) and (2.10) we may solve for fmi, 
and obtain 

(m0c:) 2 ) 
2 2 2 " fmi, ex~  ln(b~(EZ~u, - ( m o c  ) )/X2~) (5.2) 

From eqs. (2.1) and (2.5) we see that we may define 

bmin = 1 + In f m i n  

( x ~ c  2 ,_ 2 ,_ �9 ln(bc(E~ut- (moc ) )/X~r J (5.3) 

For E~u t values corresponding to kinetic energies of 1 
keV, 10 keV, 100 keV and 1 MeV in water bmin is 1.56, 
3.20, 5.18 and 7.74, respectively. For an electron in 
water with 1 MeV kinetic energy, these correspond to 
minimum steps corresponding to energy losses of about 
0.070, 0.43, 3.5 and 50% respectively. 

For steps which would otherwise be greater than 
tperp when tperp is less than tmin, the curved path is 
reduced if necessary to tmin instead of tperp. The PRE- 

STA routine, as implemented in EGS, then checks with 
the geometry routine HOWFAR [10,11] to see if the 
trajectory of the electron would allow it to cross the 
boundary. In this case, if the trajectory allows for it, the 
electron step is shortened placing it on the boundary. 
For any step with the step length greater than tpe w 
(whether or not it actually intercepts the boundary), the 
LCA is not invoked to prevent any ambiguity as to 
which region contains the endpoint of the step. This 
should not cause any problems because the step is 
already short. 

This boundary crossing algorithm (BCA) is invoked 
both for particles approaching and drawing away from 
a boundary. PRESTA uses the BCA with bmin as  de- 
fined by eq. (5.3). This algorithm makes great demands 
on computing time if there are many boundaries in the 
problem or if Ecut is very low. An experienced user may 
decide to alter bmi, or turn off the BCA in certain 
circumstances. These options are available to the user 
and are described in the implementation notes [9]. 

We remark that the default for the minimum step-size 
is now a strong function of Ecu ,, and this can introduce 
an Ecut dependence which does not occur in normal 
EGS calculations. This is because ECu t now helps define 
how boundaries are approached (via eq. (5.2)). How- 
ever, if the user chooses an Eeut that is low enough for 
accurate electron transport in a given application, then 
the default minimum step-size will usually ensure that 
the approach and withdrawal from boundaries is slow 
enough to ameliorate boundary-associated artefacts for 
all electrons in the simulation. If too large a value of 
Ecut is used in comparison to the electron energy of 
interest in the problem, then all electrons may take 
steps that are too large in the vicinity of interfaces. 
Moreover, one risks the deleterious effect of having a 
large fraction of all electron steps terminate on 
boundaries. As discussed above, the LCA is not invoked 
under these circumstances. Thus, if lateral transport is 
important, inaccuracies may be introduced. Under most 
circumstances, the proper choice of Ec~t should remedy 
this problem. In other circumstances it may be desirable 
to retain a relatively high value of Ec~t and still require 
accurate electron transport. To avoid inaccuracies as 
described above the user may choose to reduce the 
minimum step-size by lowering bmi, as described in the 
implementation notes [9]. 

In such situations where the geometrical constraints 
may cause difficulty in the choice of E~ut o r  bmin, one 
should compare, for the maximum energy of interest in 
the problem, the value of t ' i ,  from eq. (5.1) or the 
equivalent expression, 

t ' i ,  = f12 ehm~./bc (5.4) 

with the minimum relevant characteristic dimension in 
the problem (for example, the slab thickness in a 
depth-dose calculation) and guarantee that t~nin is only 
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a fraction of it by either lowering Ecu I or overriding the 
bmi n default value. Alternatively, one may place a fur- 
ther constraint on the step-size by insisting that no 
charged particle step exceed a certain distance. (This 
quantity is called SMAX in EGS and is fully described 
by Rogers [3]). 

6. PRESTA 

Note that the LCA increases the straight-line distance 
travelled by the electron for a given total path-length t 
since the PLC is defined in terms of the straight line 
path-length in the original direction and not the 
straight-line path-length after the LCA is used (see 
fig. 2). 

These four elements define the electron transport 
algorithm, PRESTA. 

Putting all the above components together gives the 
PRESTA algorithm which can be summarized as fol- 
lows. 

For ~ach electron step, the difference between the 
total curved path length and the straight line path 
length is accounted for using a new path-length correc- 
tion (PLC) algorithm which is given by eq. (2.20). This 
algorithm has been shown to be accurate for steps 
greater than train (given by eq. (2.8)) and less then tma.~ 
(eq. (2.10)). These values define the limits of applicabil- 
ity of the underlying Moli~re multiple scattering theory. 
For the occasional steps taken with t < t~,i, (near 
boundaries or before discrete events), neither multiple 
scattering nor PLC is done. 

With an accurate PLC available, it is possible to take 
much larger steps than was previously possible, except 
that three other aspects of the problem must be taken 
into account. 

Firstly, in the PLC and other algorithms, it becomes 
essential to evaluate all quantities at the energy mid- 
point of the step. 

Secondly, for accurate simulations in the vicinity of 
an interface, one must take care that no part of the 
actual curved path of the electron being transported on 
one side of the interface can take place in the region 
across the interface. For this reason, as we approach 
and leave a boundary or do any transport near a 
boundary, PRESTA limits steps to t _< tperp, where tp~p 
is the closest distance to any boundary (not necessarily 
along the path of the electron). To allow electrons to 
cross a boundary, this algorithm is not allowed to 
reduce the step size below t ' in as given by eqs. (5.1) 
and (5.2). Note that tmi n is chosen automatically and is 
a function of the input parameter Ecu t. Only under 
special circumstances described in section 5 will the 
user find it necessary to lower the value of tml n- 

Finally, for large steps the lateral deflection of each 
individual step becomes significant and this is incorpo- 
rated using the lateral correlation algorithm (LCA) de- 
fined in eq. (3.1) along with a maximum value of 

- s  2 . Note that implementation of this LCA re- 
quires use of the boundary crossing algorithm to ensure 
that the particle is not moved out of its current region 
by the lateral movement. For those steps so close to a 
boundary that t < t~ain, the LCA is not invoked to 
prevent uncertainties as to what region the step ends in. 

7. Applications 

In this section we apply PRESTA to some practical 
problems highlighting its strengths as well as its weak- 
nesses. 

7.1. Energy deposition at depth 

Energy deposition at large depths in thick slabs is a 
good test for all the components of PRESTA. There- 
fore, we have simulated electron transport in a slab of 
water infinite in height and depth with one boundary 
situated at one-half the CSDA range, r 0, of the incident 
electron. A broad beam of electrons was incident nor- 
mally on the face of the slab and the energy deposited 
beyond the boundary at �89 0 was calculated. The crea- 
tion of secondary particles was not done explicitly but 
was included implicitly by the use of total stopping 
powers. The energy at which the electron history was 
terminated was 1% of the incident energy except in the 
10 keV case where 10% was used. 

The results for 10 MeV, 1 MeV, 100 keV and 10 keV 
electrons in water are shown in fig. 11. The fractional 
energy deposited past ro/2 versus Estep ~, the maximum 
fractional energy loss per step, is depicted. In all cases, 
the points plotted at Est~p ~ = 0.2 correspond to the 
default values, t = tm~ for PRESTA, and t = 0.gtmax 
for NO PLC and the Fermi-Eyges-Yang PLC. (This 
0.8 factor is the default for EGS.) For these latter two 
cases, the LCA and BCA were not invoked. PRESTA 
shows excellent stability over the range of step-sizes 
shown. Only for the 10 keV case do we see evidence of 
breakdown at the smaller step-sizes. The Fermi-Eyges 
-Yang PLC performs quite well at 10 MeV. In all cases, 
the simpler algorithms converge at small step-sizes to 
the PRESTA result. 

It is instructive to consider the effects of turning off 
the BCA and LCA within PRESTA. In the 1 MeV case 
with the default Est~pc, turning off the LCA reduces the 
energy deposited past ro/2 by 4.5% and also turning off 
the BCA reduces the energy deposited by a further 
6.7%. Turning off the BCA means that portions of the 
electron's path which would have gone past ro/2 due to 
the curvature of the electron step have not been prop- 
erly accounted for, and hence the energy deposition at 
depth is reduced. The effect of the LCA is more corn- 
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Fig. 11. Fraction of energy deposited past one-half the CSDA range for broad beams of electrons incident on a thick water phantom 
as a function of the maximum fractional energy loss per step for various electron transport algorithms as labelled�9 The calculations 
were done in the CSDA approximation and terminated at the cutoff energies (total) shown. The PRESTA algorithm includes all its 

components whereas the other algorithms include no LCA or BCA. 

plex. If it had been used the LCA would not have 
affected the values of  ( z )  shown in figs. 7 or 9 but 
because of  an increase in the average straight-line path- 
length, the width of  the ( z )  distribution would increase. 
Thus the energy deposited past a certain depth will 
increase for large depths and decrease for small depths. 

7.2. Reflection 

For this problem the simulations performed were 
identical to the above cases except that the total amount  
of  energy reflected from the slab was calculated. The 
results are plotted in fig. 12. Although the P R E S T A  
results are more stable than the results of  the simpler 
algorithms, there still remains dependence on step-size. 
This is not surprising in view of  the fact that P R E S T A  
does not sample straggling distributions about the mean 
values ( z )  and ( r ) .  For a particle undergoing a total 

curved path t, if its posit ion were sampled from distri- 
butions that allow for straggling, it's final posit ion may 
be anywhere in a sphere of  radius t centered at the 
particle's initial position. However,  from eqs. (2.12) and 
(3.1) we see that P R E S T A  only al lows the particle to lie 
within a cone with its vertex at the initial posit ion and 
aligned along the initial direction of  the particle, with 
height s and base radius �89 t. While  we have ensured that 
the average values of  longitudinal  and lateral displace- 
ment are correct, we know that we do not  obtain the 
correct distribution about these averages. The dis- 
crepancy is largest in the backwards direction and this 
is the reason for the step-size dependence in fig. 12. We 
recognize, however,  that the problem we are encounter- 
ing in this section is one of  the most  difficult that an 
electron transport algorithm can be asked to simulate. 
The lack of  straggling distributions represents a short- 
coming for P R E S T A  and indicates the next area for 



A.F. Bielajew, D.W.O. Rogers / Algorithm PRESTA for electron Monte Carlo transport 177 

XaO -z  

0 . 1 5  

u 

r 0 . 1 0  

r _  

r 

' ~  0 . 0 5  

0 
-re 

II0  

L 

0 . 0 0  ~ I 

0 . 0 0  

. . . .  ; ' ' ' ' I . . . .  ) ' ' ' ' 

",~. PRESTA 

........... ~ t / -  
- - . . .  

NO PLC ~ FERMI-EYGES-YANG PLC "X,,- 

" '"- . , , . , .  

M e V  """*~ 
, I , , , , I , t , , I , , , I -  

O. 05 0 10 0 15 O. 20 

E s t e p e  

" 0  

( -  

L 

c 
G,I 

t -  
O 

0 . 0 1 5  

0 . 0 1 0  

0 . 0 0 5  

' ' ' ' I ' ' ' ' I 

I .  0 M e V  

0 . 0 0 0  I I ~ ~ [ 

0 . 0 0  0 . 0 5  

[ ' ' ' ' I 

" ' . ' - .  NO PLC 

-.. " .  

FERNI-EYGES-YANG P LC ~x ~*N. 

0 . 1 0  0 . 1 5  0 . 2 0  

Esteoe 

"0  

4J 
tJ 

..-I 

s 

t 

t -  

O 

L 

0.03 ' ' ' I r , 

0 . 0 2  l , - ,  

0 . 0 1  

100 I<eV 

0.00 I I t I B i 

0 . 0 0  O.Ofi  

' ' ' I ' ' ' f I ' ' r - -  

PRESTA 

x ' - .  

" " . . ' ' .  NO PLC 

FERMI-EYGES-YANG PLC " ' , .  

, , , I = L , , I = , , , "~ 

o.  lO 0 %5 0 20 

E s t e p e  

0 . 0 3  

0 . 0 2  

r ~  0 . 0 1  
t-  

"'4,. NO PLC 

10 k e V  

0 . 0 0  I I t L I , ~ , I L 

0.00 0 . 0 5  0 . 1 0  

E s t e p e  

Fig. 12. Fraction of beam energy reflected in the calculations shown in fig. 11. 
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improvement. At the same time, the reflected compo- 
nent represents a small fraction of the energy involved 
in most simulations and this is not usually a serious 
shortcoming. 

It is difficult to determine from fig. 12 what the 
converged values are except that we expect the results 
for smaller step-sizes to be closer to the truth. Again, 
the 10 keV case shows evidence of breakdown at small 
step-sizes. 

7. 3. Ion chamber response 

The calculation of the response of thick-walled ion 
chambers to photon irradiation is a good test for elec- 
tron transport algorithms because the theory is known 
[18] and it can predict the response with  a high degree 
of accuracy. Ion chamber response has been the subject 
of detailed Monte Carlo studies [8,19,20] and it has 
been found that ion chamber response can be subject to 

severe electron step-size dependences. 
In fig. 13 we have plotted the response of a thick 

carbon-walled cyfindrical ion chamber (wall thickness 
0.273 cm, inner radius 1 cm, inner depth 2 ram) versus 
Estepe, the maximum fractional energy loss per electron 
step due to "'continuous" energy loss processes. The ion 
chamber was subjected to a broad parallel beam of 
6~ photons, approximated by a monoenergetic "spec- 
trum" of energy 1.25 MeV. The results were normalized 
to ion chamber theory [18] using correction factors that 
account for photon attenuation and scatter and electron 
drift effects that were calculated previously [20]. In fig. 
13, all the points at Est~pc = 0.2 and above were calcu- 
lated using the default step-size, t = trnax for PRESTA 
and t = 0.8 tm~ for EGS. 

The curve labelled EGS (delta) was published previ- 
ously [8] and used the Fermi-Eyges-Yang PLC allow- 
ing 8-ray and bremsstrahlung photon creation above 10 
keV thresholds. The transport cut-offs were set at 10 



178 A.F Bielajew. D. 14/.0. Rogers / Algorithm PRESTA for electron Monte Carlo transport 

' ~ . 2  
. . . .  I . . . .  I ' ' ' ' I ' ' ' ' I . . . .  

0 1.0  o o n o n~  
~L) PRESTA (cede) PRESTA (delta) 
t- 
4-I 

~'.~oC O.B ~ NEW PL~ + BCA 

+a . ~ NEW PLC 
110 EGS (delta) 

0 
0.6 r 

U 

EGS (csde)  

o4 , , , , I , , , , I ,  , ~  f I L , , , ~ ' ~  , ~ ,  

O " 0 0  0 . 0 5  O . ~ 0 01 ~ 5 01 ~ 0 0 .  ~ 5 

Estepe 
Fig. 13. Response of a carbon-walled pancake ion chamber 
(0.5g cm -~ walls, 2 mm deep, 1 cm radius) to 6~ divided by 
theory versus ESTEPE for a variety of electron transport 
algorithms. PRESTA(csda): CSDA calculation using PRE- 
STA; PRESTA(delta): calculation allowing for secondary par- 
ticle production and transport; EGS(csda): CSDA calculation 
using current EGS code modified to give a CSDA calculation; 
EGS(delta): as above but with secondary particle creation and 
transport; NEW PLC: calculation using the new PLC (no 
LCA, no BCA); NEW PLC+ BCA: calculation using the new 

PLC and the BCA (no LCA). 

keV as well. There is a significant step-size dependence 
in this curve, as much as 40% for the largest step-size. 
We also show a similar calculation at the largest step-size 
for EGS where 8-rays and bremsstrahlung photons were 
not included in the simulation. The effect of a-ray 
production was incorporated into. the stopping powers 
(EGS(csda), star symbol) and the radiative contribution 
was ignored with little error. The difference between 
this and the EGS (delta) case reflects the shortening of 
effective step-size due to the sampling of discrete elec- 
tron and bremsstrahlung interactions. The result using 
the new PLC described in section 2 is shown for the 
largest step-size (NEW PLC, square symbol). This also 
is a CSDA calculation and the improvement over the 
EGS (csda) case is entirely due to the new PLC.Includ- 
ing the BCA offers only minor improvement (NEW 
PLC + BCA, triangle symbol). Finally, including the 
LCA gives the results labelled PKESTA for which the 
agreement at all step-sizes is excellent. We have also 
calculated the PRESTA result allowing for 8-ray crea- 
tion and transport (PRESTA (delta), x symbol). Again 
it is in excellent agreement with the theory. 

This calculation provides an excellent example of the 
saving in computing time that can be achieved by 
PRESTA. The PRESTA (delta) calculation executed 5�89 
times faster than the EGS (delta, Ester e = 0.01) calcula- 
tion which produced results of similar quality. Despite 

t h e  overhead of the BCA which is necessary for full 
implementat ion of the LCA, much of the electron trans- 
port  in this calculation takes place far away from any 
boundaries so that relatively large step-sizes can be 
permit ted and a corresponding gain in computing time 
is realized. 

7.4. Depth-dose curves 

D e p t h - d o s e  curves for broad parallel beams of 100 
keV, 1 MeV and 10 MeV electrons on water are shown 
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F i g .  14. Depth-dose curves for broad parallel beams of 100 
keV electrons incident on a slab of water. Calculations were 
done in the CSDA approximation with various electron trans- 
port algorithms. PRESTA as described here; the Fermi- 
Eyges-Yang PLC as implemented in the standard EGS: and 
an EGS calculation with no PLC used. Electrons were followed 
down to 1% of the incident beam's kinetic energy. Depth i s  

scaled to the CSDA range, r 0. In the upper figure, the default 
step sizes for each algorithm are used whereas in the lower a 
5% energy loss per step is used for the non-PRESTA 

algorithms. 
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in figs. 14 through 16 with the dep th  normalized to the 
C S D A  range of the incident  electrons, r 0. We show the 
P R E S T A  results (circles, solid lines) as well as the E G S  
results using the F e r m i - E y g e s - Y a n g  PLC ( •  small  
dashed  curve) and  no  PLC (triangles, large dashed 
curve). These were C S D A  calculat ions with secondary 
part icle p roduc t ion  accounted for by  the use of unre- 
stricted collision s topping powers. The radiative contri-  
bu t ion  was ignored with little error. In all cases the 
electrons were t ranspor ted  unti l  they reached a kinetic 
energy of 1% of  the initial kinetic energy whereupon the 

remain ing  energy was deposi ted " o n  the spot".  The 
geometry consisted of slabs of thickness r0/10. 

In  the upper  half  of fig. 14 we show the 100 keV case 
calculated using default  step sizes, t = tm~, for PRESTA 
and 0.8 t,,,~, for the others. The quali tat ive features of 
the results using the other  algori thms may have been  
ant ic ipated  knowing that  they lack a proper  PLC or 
BCA. For  the F e r m i - E y g e s - Y a n g  PLC case these com- 
pensate  for each other  at  the surface bu t  the peak dose 
and  dose fall-off are quite different. The N O  PLC case 
exhibi ts  a deeper  penetra t ion.  We have also compared  
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Fig. 15. Depth-dose curves for broad parallel beams of 1 MeV 
incident electrons on a slab of water. Calculations were done in 
the CSDA approximation with various electron transport al- 
gorithms. PRESTA as described here; the Fermi-Eyges-Yang 
PLC as implemented in the standard EGS; and an EGS 
calculation with no PLC used. Electrons were followed down 
to 1% of the incident beam's kinetic energy, Depth is scaled to 
the CSDA range, r o. In the upper figure, the default step sizes 
for each algorithm are used whereas in the lower a 5% energy 

loss per step is used for the non-PRESTA algorithms. 
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Fig. 16. Depth-dose curves for broad parallel beams of 10 
MeV incident electrons on a slab of water. Calculations were 
done in the CSDA approximation with various electron trans- 
port algorithms. PRESTA as described here; the Fermi- 
Eyges-Yang PLC as implemented in the standard EGS; and 
an EGS calculation with no PLC used. Electrons were followed 
down to 1% of the incident beam's kinetic energy. Depth is 
scaled to the CSDA range, r o. In the uppe r figure, the default 
step sizes for each algorithm are used whereas in the lower a 
5% energy loss per step is used for the non-PRESTA 

algorithms. 
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PRI~STA using the default step-s/ze versus the other  
algorithms using E~t~pc ~- 0.05. The results are plotted in 
the lower part of fig. 14 and it is still clear that the other 
algorithms have not yet converged. (We can assume that 
PRESTA is step-size independent from the results of  
section 7.1). In this and all the dep th-dose  cases it 
appears that the N O  PLC case is closer to the PRESTA r0/10 r0/20 r0/40 

result than the Fe rmi -Eyges -Yang  PLC. For  step-sizes 1 MeV incident 
of the order of 1% the other algorithms converge to the PRESTA (1) 1.6 2.5 
PRESTA result. EGS4 E,~p~ = 4% 1.7 1.8 2.1 

For  the other energies, 1 MeV in fig. 15 and 10 MeV EGS4 Estcpr ~ 1% 4.8 5.4 5.4 
in fig. 16 the same conclusions can be drawn except that 20 MeV incident 
as expected, the other algorithms tend to agree better PRESTA (l) 1.7 2.7 
with PRESTA as the energy increases. EGS4 default 0.44 0.63 1.0 

EGS4 E s t e p  c = 4% 1.7 1.9 2.1 
EGS4 E s t e p  r = 1% 5.5 5.7 5.9 

8. Computing time comparisons 

Table 2 
Timing comparison between EGS4 and PRESTA calculations 
for depth-close curves with various bin sizes. Fixed electron 
transport cutoffs of 0.010 and 0.189 MeV were used at 1 MeV 
and 20 MeV. respectively. For each incident energy, the times 
are normalized to the PRESTA results for the largest bins. 

In this section we compare the computat ion speed of 
PRESTA with the standard EGS4 code [11]. We com- 
pare 1 and 20 MeV electron dep th-dose  calculations for 
depth bin-sizes of ro/lO, r0/20 and ro/40. In one set of 
cases the minimum electron transport energy was set to 
the energy of  an electron that could just cross a depth 
bin based on its CSDA range. For  the 1 MeV case these 
cutoffs were 0.197, 0.128 and 0.085 MeV for ro/lO, 
r0/20 and ro/40 depth bins, respectively, For  the 20 
MeV case these cutoffs were 1.914, 1.054 and 0.613 
MeV. For  a second set of calculations the cutoffs were 
held fixed at 0.010 and 0.189 MeV respectively in order 
to eliminate differences due to changes in the cutoff. 
The computations were done on a Vax 11/780 com- 
puter  with floating-point acceleration. A computer  code 
which allows either PRESTA or the standard EGS4 
simulation was used for all calculations. The results for 
the calculations with variable cutoffs are given in table 
1 and2.  

As one decreases the bin size PRESTA takes more 

Table 1 
Timing comparison between EGS4 and PRESTA calculations 
for depth-dose curves with various bin sizes (see text). Varia- 
ble electron transport cutoffs were used depending on the bin 
size. For each incident energy, the times are normalized to the 
PRESTA results for the largest bins. 

r0/10 r0/20 ro/40 

1 MeV incident 
PRESTA (1) 2.2 3.6 
EGS4 Esteo r = 4% 1.7 2.6 3.8 
EGS4 Este0 r = 1% 4.4 6.2 8.6 
20 Me V incident 
PRESTA (1) 2.4 4.3 
EGS4 default 1.0 1.5 2.7 
EGS4 Estetar m 4% 1.9 2.8 4.1 
EGS4 Estep e = 1% 4.6 6.9 10 

computing time due to the increased use of the BCA. 
However, for a comparable quality of result (see section 
7.4), that is, E~tep e of 4~ or lower for 20 MeV and 1% 
for 1 MeV, PRESTA is faster by factors as high as 4. 
The principle saving comes from the more efficient 
transport of the low energy electrons and the ability of  
all electrons to take large transport steps when there is 
no nearby boundary. We have already seen a case in 
section 7.2 where an ion chamber simulation that in- 
volved very few boundaries executed 5�89 times faster 
using PRESTA than a similar quality calculation using 
the standard EGS4 methods. 

Similar results are obtained if the lower transport 
threshold is left fixed for the simulation. These results 
are shown in table 2. 

9. Conclusion 

In this report we have presented PRESTA, a new 
electron transport algorithm for use in Monte Carlo 
codes. We have also demonstrated its deployment in the 
EGS code system although it can be implemented in 
other codes as well. The new PLC theory may also be 
used in analytic electron transport calculations. We 
have not intended to make this report an extensive 
benchmark of  PRESTA against experimentally mea- 
sured data. This is the ultimate test of any calculation 
and we leave this for future work and encourage others 
to do this as well. There is room for improvement in 
PRESTA and by extensive comparisons with other data 
the directions for improvement can be clearly indicated. 

We believe that PRESTA represents a significant 
advance in electron transport callculational method. It 
removes much of the onus on the user to set parameters 
that govern the electron step-size used in the simulation. 
By solving many of the problems associated with step- 
size dependence one is assured that the calculated re- 
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sults are stable with respect to step-size except in cases 
where a great deal of backscatter or longitudinal or 
lateral straggling is involved. This problem has been 
reduced but not completely eliminated. With PRESTA, 
the speed of the electron simulation is determined en- 
tirely by the secondary particle production thresholds, 
the lowest energy of transport and the number of 
boundary crossings. By considering the physics of the 
simulation a user can simply determine the opt imum set 
of these parameters. Not  requiting to establish, for 
example, the largest E~tcp ~ that one can "get  away with" 
eliminates much tedious work for the Monte Carlo user 
and the reliability and credibility of the results are 
augmehted. The savings in computing time can be 
dramatic,  as high as a factor of 6 to obtain the same 
quality of result when compared to current algorithms. 
This is made possible by simulating electron paths more 
accurately and allowing much larger electron step-sizes 
than previously possible. The additional saving in time 
because the ~ser does not need to do a detailed study of 
step-size dependence is more difficult to estimate but it 
is likely to be substantial. 
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