DISCOVERY OF $\frac{11^{+}}{2}$ LEVEL IN ¹⁹F

J. H. AITKEN, K. W. ALLEN*, R. E. AZUMA, A. E. LITHERLAND and D. W. O. ROGERS University of Toronto, Canada

Received 11 February 1969

A resonance has been discovered in the ${}^{15}N(\alpha,\gamma){}^{19}F$ reaction which strongly populates the recently-dis-covered $[1]{}^{13}{}^+$ level at 4.648 MeV in ${}^{19}F$. Measurements show that it corresponds to a level with spin ${}^{11}{}_{2}$ in ${}^{19}F$ at $\dot{E}_{x} = 6.500$ MeV.

The low-lying even parity levels of $^{19}{
m F}$ are described in the shell model as states of mixed configurations of three nucleons in the s-d shell outside an inert ¹⁶O core. The recently-dis-covered $[1]\frac{13^+}{2}$ level in ¹⁹F at an excitation energy of 4.648 MeV, the $\frac{3}{2}$ level (2.78 MeV), the $\frac{3}{2}$ + level (1.56 MeV), the $\frac{5}{2}^+$ level (0.197 MeV) and the $\frac{1}{2}^+$ level (g.s.), fit fairly consistently into the general framework of this description by the calculation of Elliott and Flowers [2]. However, an $\frac{11}{2}^+$ level, required by the model and predicted by the theory to lie above the $\frac{13}{2}^+$ level, has not yet been reported.

In an effort to locate the $\frac{11}{2}^+$ level, we have extended our study of resonances in the $^{15}N(\alpha,\gamma)^{19}F$ reaction up to $E_{\alpha} = 3.20$ MeV [3]. Targets of titanium nitride (99%¹⁵N) on a backing of tantalum were bombarded with currents of He⁺ of up to 50 μ A from the 3 MV Van de Graaff accelerator of the Ontario Cancer Institute. The spectra of the resulting γ -rays were studied with Ge(Li) detectors of 40 cm^3 and 35 cm^3 . Fig. 1(a) shows the yield of γ -rays as a function of bombarding energy in the region of interest. The γ -ray spectrum associated with the peak in the yield curve at 3.15 MeV was found to show transitions to the $\frac{13}{2}^+$ and $\frac{9+}{2}^+$ levels in ¹⁹F to-gether with decays to the $\frac{1+}{2}^+$, $\frac{1}{2}^-$, $\frac{3}{2}^-$, $\frac{5}{2}^+$ and $\frac{5}{2}^-$ levels. The simplest explanation of this is that two closely-spaced or over-lapping levels of ¹⁹F are being formed, one with spin $\ge \frac{9}{2}$, the other of low spin. Dixon and Storey [4] have since shown that at this bombarding energy there are two resonances about 2 keV apart, the higher one decaying to the $\frac{13}{2}^+$ and $\frac{9}{2}^+$ levels, and the lower one decaying to the low-spin levels. The decay scheme attributed to the high-spin level is shown in fig. 1(b).

Fig. 1(c) shows the angular distribution of the 3.72 MeV γ -ray attributed to the decay of the high-spin resonance level to the $\frac{9}{2}^+$ level. Of the postulates $\frac{9}{2}$, $\frac{11}{2}$ and $\frac{13}{2}$ for the spin of the resonance level, only $\frac{11}{2}$ gives a good fit ($\chi^2 = 4.0$). The multipole mixing ratio δ is found to be 0.02 ± 0.02. The best fits for the other postulates have $\chi^2 = 80 \left(\frac{9}{2}\right)$ and $\chi^2 = 350 \left(\frac{13}{2}\right)$. This angular distribution alone is sufficient to establish the spin of the resonance level as $\frac{11}{2}$.

The 1.852 MeV primary γ -ray from the $\frac{11}{2}$ to $\frac{13}{2}$ transition and the 1.869 MeV secondary γ -ray from the $\frac{13}{2}$ to $\frac{9}{2}$ transition are not completely resolved in the spectra observed at forward angles because the primary γ -ray shows the full Doppler shift. The angular distribution of the two treated as an unresolved doublet is shown in fig. 1(d). The secondary γ -ray is assumed to be pure quadrupole. The multipole mixing ratio of the primary gamma-ray is found to be $\delta = 0.03 \pm 0.03$ for the best fit $(x^2 = 1.0)$. The ratio of the intensities of the primary and secondary γ -rays was measured at 90° and 135° and found to be 1.53 ± 0.06 (theory: 1.490) and 0.80 ± 0.02 (theory: 0.815), respectively. The theoretical ratios are for the spin sequence $\frac{11}{2}$ to $\frac{13}{2}$ to $\frac{9}{2}$ with $\delta = 0.03$. The identification of the $\frac{11}{2}$ level found in this

The radiative yield (2J+1) $\Gamma_{\alpha}\Gamma_{\gamma}/\Gamma$ of the high-spin resonance was found to be 5.0 ± 0.5 eV by comparing the γ -ray yield from this resonance with the yield from the $E_{\alpha} = 1.68$ MeV resonance in the ${}^{15}N(\alpha,\gamma){}^{19}F$ reaction by use of the same target for both resonances. The yield from the 1.68 MeV resonance in ${}^{15}N(\alpha,\gamma){}^{19}F$ was determined by comparison with the $E_{\alpha} = 1.53$ MeV resonance in ${}^{14}N(\alpha,\gamma){}^{18}F$ of which the yield has been measured absolutely by Parker [5]. This latter intercomparison was carried out with a single titanium nitride target containing both $14_{\rm N}$ and $15_{\rm N}$ in a known ratio.

^{*} Visiting Scientist, University of Oxford.

Fig. 1. (a) Gamma-ray excitation curve for the reaction ${}^{15}N(\alpha,\gamma){}^{19}F$ for E_{α} between 2.5 and 3.2 MeV. (b) Decay and branching ratios of $\frac{11}{2}$ level in ${}^{19}F$. (c) Angular distribution of γ -ray attributed to $\frac{11}{2}$ to $\frac{9}{2}$ transition. (d) An-gular distribution of sum of primary and secondary γ -rays attributed to $\frac{11}{2}$ $\rightarrow \frac{13}{2}$ $\rightarrow \frac{9}{2}$ cascade.

work with the $T = \frac{1}{2}$, $J^{\pi} = \frac{11}{2}^+$ level predicted by Elliott and Flowers [2], Redlich [6], Inoue et al. [7], and most-recently by Benson and Flowers [8], is based on the fact that its energy and modes of decay are in fairly good agreement with theory. Table 1 shows a comparison of experimental and theoretical transition strengths (in single-particle or Weisskopf units [9]). The theoretical values are from the intermediate coupling calculation of Benson and Flowers [8]. The experimental values are calculated from our estimates of the mixing ratios and the yield measurement in which it is assumed that $\Gamma_{\alpha} \gg \Gamma_{\gamma}$ for the resonance level. This assumption is reasonable because unless one assumes that $\Gamma_{\alpha} \gtrsim \Gamma_{\gamma}$ at

least, the measured enhancements of the M1 transitions become improbably large. The assumption that $\Gamma_{\alpha}\gtrsim\Gamma_{\gamma}$ leads to $\theta_{\alpha}^{2}\gtrsim4.4\times10^{-3}$

		Table 1		
Transition	$ M ^2$ (Weisskopf units)			
	M1		E2	
	Expt.	Theory	Expt.	Theory
$\frac{11^{+}}{2}$ to $\frac{9^{+}}{2}$	0.20 ± 0.03	0.15	$0.06^{+0.18}_{-0.06}$	0.13
$\frac{11^{+}}{2}$ to $\frac{13}{2}^{+}$	1.4 ± 0.2	0.84	3.0 + 9.0 - 3.0	1.97

Volume 28B, number 10

(for R = 4.864 fm) for the reduced α -particle width. Clearly a measurement of Γ_{α} for the $\frac{11^+}{2}$ level would be of considerable interest in discussing the validity of the current interpretation of the low-lying positive parity levels of 19 F as being due to three nucleons outside an 16 O core

[2, 6-8]. An $\frac{11}{2}$ assignment for the resonance is not ruled out by the present data. However the measured yield would then imply that $\theta_{\alpha}^2 \gtrsim 6.4 \times 10^{-2}$ This work was supported in part by the National

Research Council of Canada.

References

- 1. K. P. Jackson et al., Bull. Am. Phys. Soc. 13 (1968) 1370.
- 2. J. P. Elliott and B. H. Flowers, Proc. Roy. Soc. A229 (1955) 536.
- 3. J. H. Aitken, A. M. Charlesworth, R. E. Azuma and A.E. Litherland, Bull. Am. Phys. Soc. 13 (1968) 651.
- 4. W.R. Dixon and R.S. Storey, private communication.
- 5. P. D. Parker, Phys. Rev. 173 (1968) 1021.
- 6. M. G. Redlich, Phys. Rev. 99 (1955) 1427.
- 7. T. Inoue, T. Sebe, H. Hagiwara and A. Arima, Nucl. Phys. 59 (1964) 1.
- 8. H. G. Benson and B. H. Flowers, Nucl. Phys., to be published.
- 9. D. H. Wilkinson, in Nuclear spectroscopy Part B ed. F. Ajzenberg-Selove. (Academic Press 1960).

* * * * *