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Abstract
Specifying photon spectra of clinical linacs using a functional form is
useful for many applications, including virtual source modelling and spectral
unfolding from dosimetric measurements such as transmission data or depth-
dose curves. In this study, 11 functional forms from the literature are
compiled and quantitatively compared. A new function is proposed which
offers improvements over existing ones. The proposed function is simple,
physics-based and has four free parameters, one of which is the mean incident
electron kinetic energy. A comprehensive benchmark set of validated, high-
precision Monte Carlo spectra is generated and used to evaluate the strengths
and limitations of different functions. The benchmark set has 65 spectra
(3.5–30 MV) from Varian, Elekta, Siemens, Tomotherapy, Cyberknife and
research linacs. The set includes spectra on- and off-axis from linacs with
and without a flattening filter, and in treatment and imaging modes. The
proposed function gives the lowest spectral deviations among all functions. It
reproduces the energy fluence values in each bin for the benchmark set with a
normalized root-mean-square deviation of 1.7%. The mean incident electron
kinetic energy, maximum photon energy, most-probable energy and average
energy are reproduced, on average, within 1.4%, 4.3%, 3.9% and 0.6% of their
true values, respectively. The proposed function is well behaved when used
for spectral unfolding from dosimetric data. The contribution of the 511 keV
annihilation peak and the energy spread of the incident electron beam can be
added as additional free parameters.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

One of the methods to specify photon spectra of clinical linacs is to assume that the spectra
follow a certain functional form with a few free parameters. Each spectrum is then fully
characterized by a unique set of those parameters. This parameterization approach makes the
spectra more portable and compact, facilitates virtual source modelling (Fippel et al 2003,
Sikora et al 2007) and tames the classic ill-conditioned problem of unfolding photon spectra
from dosimetric measurements such as transmission data (Baker et al 1995) or depth-dose
curves (Ahnesjö and Andreo 1989), by reducing the task to only finding the free parameters
for the spectrum in question. Ideally, a suitable functional form should satisfy the following
seven conditions: it should (1) be relatively simple so that its behaviour is easily understood;
(2) have reasonably few free parameters for the function to be robust during spectral unfolding;
(3) be based on physics to prevent unphysical shapes; (4) be flexible enough to accommodate
current clinical spectra of interest (different manufacturers, beam energies, beam modifiers,
on- and off-axis spectra, etc); (5) be able to uniquely discern spectra with slight energy
variations; (6) clearly characterize the endpoint energy, which has been traditionally difficult
to unfold (Baker and Peck 1997); and (7) not require a priori knowledge of the spectrum
or the linac head. Current treatment planning systems (TPSs) that use semi-analytical dose
calculation engines may not have such stringent conditions on the accuracy of the input photon
spectra or the functional forms representing them. This is because of the presence of other
model approximations and tweaking parameters. However, as TPSs move towards Monte
Carlo engines and more detailed patient and beam modelling, the requirements on the spectral
functional form become more stringent, particularly for accurate dose calculations around
tissue heterogeneities (Charland et al 2004). Accurate spectral knowledge is also useful for
better modelling of the energy response of detectors in a given beam (Tonkopi et al 2005).

We are currently pursuing a project with the goal of accurately and reliably unfolding linac
photon spectra from transmission measurements (Ali and Rogers 2011a) and from depth-dose
curves (Ali et al 2011). A necessary (but not sufficient) prerequisite to achieve this goal
is the choice of a functional form that is accurate, flexible and robust. This is presented
separately here because of its general utility. In this study, the functional forms available in the
literature are compiled. A comprehensive benchmark set of validated, diverse, high-precision
Monte Carlo spectra is generated and used to evaluate the strengths and limitations of different
functions. A new function is proposed, which offers improvements over existing ones.

2. Methods

2.1. Functional forms from the literature

In this section, a chronological summary of 11 functional forms from the literature is presented.
Notation is standardized as defined in table 1, and a summary of the functions is given in table
2. For brevity, functions are called henceforth by their index (first column in table 2). Energy-
independent multiplicative terms and overall free scaling factors that appear in the original
functions are not reproduced in table 2 because the need for them can be eliminated with
proper normalization. On the other hand, we treat the maximum photon energy, Em, as a free
parameter in the functions that contain it, even if the original authors did not intend it as such
(thus in our terminology a three-parameter function implies C1, C2 and Em). This is because in
clinical linacs the mean incident electron kinetic energy, Ee, is typically unknown. Using the
commercial nominal MV to represent Em in a functional form can be a gross approximation,
e.g., Ee = 14.7 and 19.0 MeV for Siemens KD 18 MV and Elekta SL 25 MV beams, respectively
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Table 1. Notation adopted in this study.

Symbol Definition

E Photon energy.
φ(E), ψ(E) Respectively, differential photon fluence and energy fluence at E.
nb Number of energy bins in a spectrum; nb = 100.
φb, ψb Respectively, differential fluence and energy fluence for energy bin b of width dEb.
ψav Average energy fluence; ψav = ∑nb

b=1 ψb dEb/
∑nb

b=1 dEb.
El, Em Respectively, lowest and maximum photon energy in ψ(E).
Ee Mean incident electron kinetic energy in the Monte Carlo simulation that

generated the photon spectrum. Em = Ee for monoenergetic electrons.
Et Mean incident electron total energy; Et = Ee + mec

2.
Emp Most-probable energy of ψ(E) for the bremsstrahlung continuum

(i.e. excluding the 511 keV annihilation peak if present).
Eav Average energy of the spectrum; Eav = ∑nb

b=1 ψb dEb /
∑nb

b=1 φb dEb.
np Number of free parameters in a functional form

(including Em or Ee if a function has either of them).
Cf Free parameter f ; Cfs is a set of Cf parameters.
%�s(X) For spectrum s, the per cent deviation of fit, f , from truth, t, for quantity X:

= (100/ψs,t
av )

√
(1/nb)

∑nb

b=1(ψ
s,f

b − ψ
s,t
b )2 for X = ψ ,

= 100|Xs,f /Xs,t − 1| for X = Ee, Em, Emp or Eav (see the footnote).
ns Total number of spectra in the benchmark set; ns = 65.
%�(X) Overall per cent deviation over the ns spectra for quantity X:

= (1/ns)
∑ns

s=1 %�s(X) for X = ψ , Ee, Em, Emp or Eav.
σ Per cent standard deviation of the electron Gaussian energy spread around Ee.
wj Weight of sub-spectrum j with Ej

e (to model the energy spread of incident electrons).
dσbr/dE Bremsstrahlung cross-section, differential in photon energy only.
x An arbitrary depth in the bremsstrahlung target.
Z Atomic number.
μX(E) Mass attenuation coefficient of material X at energy E.
δ(E − E511) Dirac delta function at the center of the 511 keV energy bin.
dE511 Width of the 511 keV energy bin (user-defined).

Note: the maximum photon energy, Em, can be larger than the mean incident electron kinetic energy, Ee,
because of the energy spread of the incident electron beam in typical clinical linacs. Therefore the fitted
endpoint energy is compared with both the true Ee and the true Em.

(Sheikh-Bagheri and Rogers 2002b). The alternative of using the physically meaningful MV
beam quality proposed by LaRiviere (1989) (which is based on %dd(10)) to fix Em is also not
suitable because it depends on the beam modifiers (as it should).

The authors of functions 2, 5, 7, 10 and 11 unfolded or directly fitted the photon fluence,
φ, while the rest used the energy fluence, ψ . In this study, ψ is used for all functions because it
gives more reasonable weight to the higher energy portion of the spectrum, which constitutes
a more rigorous test of the functions. For a given energy range, ψ has a smaller range of
variation than φ and thus graphically reveals discrepancies better. Also, to first order, ψ is
more directly proportional to dose than φ because the mass energy absorption coefficient for
water is relatively flat at megavoltage energies. Some functions are strictly empirical without
physics grounds (functions 2, 6, 7, 8, 10 and 11 are ansatzes), while others are based on physics
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Table 2. Chronological list of the functional forms analysed in this study. Notation is defined in table 1 and energies are in MeV. Equation numbers from the original publications are
listed for ease of cross referencing. See sections 2.1 and 2.2 for details.

Original
Index Author(s) equation (s) np Function

1 Dance and Baggerly (1965) p 38 2 ψ(E) = (Em − E) exp(−C1E/Em).
2 Tarasko et al (1988) 2 6 ψ(E) = (C1 + C2Em)(E/Em)C3+C4Em(1 − E/Em)C5 .

3 Ahnesjö and Andreo (1989) 4 4 ψ(E) = E exp(−μC2(E)C3)
∫ C1

0
dσbr
dE

|(x,E′
e)

exp[−μW(E) (C1 − x)] dx.

4 Baker (1993); Baker et al (1995) 5 4 ψ(E) =
[(

1 − E

Et

)
(ln η − 1) + C2

(
E

Et

)2
(ln η − 0.5)

]
exp (−μW (E) C1 − C3/E),

η =
[(

mec
2E

2Et (Et −E)

)2
+

(
3√

Z

111

)2
]−0.5

.

5 Krmar et al (1993) 8 4 ψ(E) = equation 3BS(e) in Koch and Motz (1959) × exp(−C1/E
C2 − C3E).

6 Bloch and McDonough (1998) 5a,b 2 ψ(E) = E

C1C2
for E � C1, and ψ(E) = 1

C2
exp

(
−(E−C1)2

2C2
2

)
for E � C1.

7 Fippel (1999) 11 3 ψ(E) = EC1 exp(−C2E) for El � E � Em, and ψ(E) = 0 elsewhere.
8 Sawchuk (2001) 4 2 ψ(E) = sin [π(E − El)/(Em − El)] exp [−C1(E − El)].
9 Hinson and Bourland (2002) 13 2 ψ(E) = (Em − E) exp(−μX(E)C1).
10 Sikora et al (2007) 1–4 4 ψ(E) = (1 − e−C1E)(e−C2E − e−C2Em) exp[−(μST (Em) − μST (E))C3],

μST (E) = 0.027(E + 0.16)−1.2 + 0.03.

11 Davidson et al (2008) 1 5 ψ(E) = E

⎡
⎣

√
E−C2

C3
+

√
C3

E−C2

C1(E−C2)

⎤
⎦ exp

⎡
⎣−

(√
E−C2

C3
−

√
C3

E−C2

)2

2C2
1

⎤
⎦ /[

1 + exp
(

E−C4
C5

)]
,

C1 > 0, C2 < El, C3 > 0.
12 This study – 4 ψ(E) = ψthin(E) exp(−μW (E)C2

1 − μAl(E)C2
2 ),

ψthin(E) =
[

1 + C3
E

Ee
+

(
E

Ee

)2
] [

ln
(

Ee(Ee−E)

E
+ 1.65

) − 0.5
]
.

13 This study (with 511 keV) – 5 in 12 above, replace ψthin(E) with ψthin(E) + C4
δ(E−E511)

dE511
.

14 This study (with spread around Ee) – 5 in 12 or 13 above, replace ψthin(E,Cf s, Ee) with
∑

j wj ψthin(E,Cf s, Ej
e ).
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formalisms (functions 1 and 9 are based on the Kramers spectrum (Kramers 1923), functions
4 and 5 are based on the Schiff thin-target spectra (Schiff 1951, Koch and Motz 1959, Desobry
and Boyer 1991) and function 3 and the like are based on thick-target spectra). Note that
the Kramers spectrum is technically a thick-target spectrum, but because of its simplicity the
functions based on it are not grouped with function 3. The following are relevant details about
each function in table 2.

Function 1. Dance and Baggerly (1965). The function was proposed to describe measured
bremsstrahlung production from fully stopping aluminium and iron targets bombarded with
monoenergetic electrons in the energy range of 0.5–3.0 MeV. The term Em − E is the
approximate Kramers thick-target spectrum, which ignores electron scattering and breaks
down at relativistic energies (Koch and Motz 1959); thus the exponential term was added to
give the function some flexibility. Note that ψ(Em) = 0.

Function 2. Tarasko et al (1988). The function was proposed to describe bremsstrahlung from
thick targets as a gamma source in photo-nuclear experiments (e.g. to unfold photo-fission
cross-sections). Note that ψ(Em) = 0. For a fixed Em, we note that the function reduces to
ψ(E) = (Em − E)C

′
1EC ′

2 , up to a scaling factor.

Function 3. Parameterized thick-target formulae, e.g., Ahnesjö and Andreo (1989). Thick-
target formulae use reasonable approximations to account for the spreading and slowing down
of electrons in the target (Nordell and Brahme 1984, Findlay 1989, Desobry and Boyer 1991).
A number of parameterized functional forms which are based on thick-target formulae have
been proposed (Ahnesjö and Andreo 1989, Baker 1993, Harrison et al 1993, Garnica-Garza
2008), an example of which is function 3, which was proposed in the context of spectral
unfolding from depth-dose curves. In this function, dσbr/dE|(x,E′

e)
is the bremsstrahlung

cross-section for electrons of kinetic energy E′
e, where E′

e is the mean kinetic energy of
the electron spectrum at depth x in the target. The free parameters C1, C2 and C3 represent,
respectively, the target thickness, the flattening filter effective atomic number and the flattening
filter effective thickness. Parameterized thick-target formulae are not analysed further in this
study for the following four reasons: (1) they are heavily tailored, which restricts how
they can be parameterized and makes them inflexible to handle diverse spectra of interest
or to compensate for some of the underlying thick-target model approximations; (2) their
complexity limits their portability and usefulness; (3) although their fit parameters are usually
physically meaningful, the spectral fitting/unfolding may not be sensitive to some of those
parameters (e.g. C2 in function 3); and (4) in spectral unfolding from other measurements,
the double integration (once for ψ and once for the integrated detector signal) introduces
more numerical noise than the single integration used with simpler ψ functions. This is not
desirable in ill-conditioned unfolding problems that are noise-driven. It is useful to note that
the thick-target model of Findlay (1989) is unique in that it is a closed form. This led us to try
to parameterize it. However, the fit results were significantly worse than our simpler proposed
function.

Function 4. Baker (1993) and Baker et al (1995). The function was proposed for spectral
unfolding from transmission data. Bremsstrahlung photons were assumed to be produced
only in the first thin-target layer, and thus the first square bracket is based on the Schiff
thin-target spectrum in the forward direction with a photon emission angle of zero. The use
of the forward direction was justified by its suitability for good-beam-geometry central-axis
transmission measurements. Photons were assumed to be attenuated by the full thickness
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of the target as a free parameter, C1. This assumption leads to overattenuation of lower
energy photons, and so C2 (expected to be negative) was introduced to add flexibility to
compensate for this assumption. Attenuation by beam modifying devices other than the target
was accommodated through C3. Baker and Peck (1997) used a two-parameter version of
function 4 (where C2 and C3 were fixed) to experimentally unfold a 6 MV spectrum, including
an estimate of Em. Baker (1993) and Partridge (2000) investigated the effect of replacing 1/E

in the exponent with μX(E) for a low-Z material and showed that the two functions produce
fits of comparable quality.

Function 5. Krmar et al (1993). The function was proposed for spectral unfolding using
a hybrid of photo-activation and transmission data. The function is composed of the Schiff
thin-target spectrum, integrated over all photon emission angles (equation 3BS(e) in Koch and
Motz (1959)) and attenuated by an energy-dependent exponential. Equation 3BS(e) is not
reproduced in table 2 for brevity and because the free parameters (aside from Em) are outside
of it. The function has two problems: large correlation among the free parameters in the
exponent and strong nonlinearity of the function with respect to C2. To make the function
usable for spectral unfolding, Krmar et al (1996) set C3 to zero and fixed C2 and Em, effectively
reducing it to a one-parameter function.

Function 6. Bloch and McDonough (1998). The function was proposed for spectral unfolding
using hybrid beam data measurements. The energy fluence is represented by a linear function
of E for E � C1, where C1 is the most-probable energy, and by a Gaussian function with a
spread of C2 for E � C1. The parameter C1 was extracted from transmission measurements,
while C2 was extracted from small-field depth-dose measurements in the buildup region. The
function is continuous at E = C1, tails off at high energies, and depends very weakly on Em

through C2.

Function 7. Fippel (1999). The function was proposed for use with the Monte Carlo dose
calculation engine XVMC. The dependence on Em is implicit through the limits of the spectrum.
The physical significance of the free parameters is that Emp for φ is (C1−1)/C2, Eav = C1/C2,
and sampling from this function can be done using the standard gamma distribution routines.

Function 8. Sawchuk (2001). The function was used for spectral unfolding from transmission
data in the context of using Monte Carlo to carry out the necessary integrations during
minimization. We found the function to be sensitive to El, the lowest energy used. Note that
ψ(Em) = 0.

Function 9. Hinson and Bourland (2002). The function was proposed for spectral unfolding
from transmission data. Similar to function 1, it is based on the Kramers spectrum (thus
ψ(Em) = 0) attenuated by a flattening filter made up of a known material, X, with its effective
thickness as a free parameter. We note that equation (14) of Hinson and Bourland (2002)
implies that function 9 represents the energy fluence folded with the ion chamber energy
response (cavity dose per unit energy fluence), which has no physical grounds and contradicts
the discussion the function was based on.

Function 10. Sikora et al (2007). Sikora et al (2007) noted discrepancies in output factors
for very small and very large field sizes in the work of Fippel et al (2003). Among
a number of proposed improvements, they proposed function 10 as more realistic than
function 7. Unlike function 7, this function has explicit dependence on Em. The last exponential
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represents attenuation in a flattening filter made up of steel, with its effective thickness as a
free parameter, C3. Note that ψ(Em) = 0.

Function 11. Davidson et al (2008). This ‘Fatigue–Fermi’ function was proposed
for a versatile source model as an input to a Monte Carlo dose calculation engine.
Apart from E at the beginning of the function to convert φ into ψ , the first two
terms together are the ‘Fatigue life’ distribution encountered in engineering modelling
applications (http://www.itl.nist.gov/div898/handbook/eda/section3/eda366a.htm), with C1

called the shape parameter (significantly affects the shape), C2 the location parameter (related
to the location of the most-probable energy) and C3 the scale parameter (related to the
distribution width). Apart from normalization factors, the second term is the probability
density function of the standard normal distribution with argument (

√
(E − C2)/C3 −√

C3/(E − C2))/C1, while the last term is the Fermi density distribution, which brings down
the tail near Em. For robustness, Davidson et al (2008) used a four-parameter version in which
C4 and C5 in the Fermi term (which are related to Em) were fixed to 0.85 Em and 0.15 Em,
respectively, making it a four-parameter function.

2.2. Proposed functional form

The function proposed in this study (12–14 in table 2) offers improvements over existing ones
in order to meet the conditions outlined in section 1. Similar to function 4, bremsstrahlung
photons are assumed to be produced in the first thin-target layer, ψthin(E), and then attenuated
by two materials representative of the target (high Z) and the aggregate of beam-modifying
devices (low/medium Z), with the effective thicknesses of the two materials as free parameters,
C2

1 and C2
2 , respectively. The use of the square for the two free parameters is to ensure positivity,

which we found to be necessary for the robustness of the form when used for spectral unfolding
from measured dosimetric data. Testing the quality of fits against the benchmark set of spectra
when using different combinations of low- and high-Z materials in the proposed function
shows that the %� metrics (defined in table 1) are insensitive to the exact choice of the two
materials, and thus tungsten and aluminium are used. If it is desired to have a self-contained
function that does not require reading or interpolating attenuation data, μW(E) and μAl(E)

can be represented by their parameterized versions given in table 3. Using these expressions
instead of the actual μ data has a negligible effect on the quality of spectral fits. Simpler
expressions of μ can be used at the expense of spectral fit quality.

Unlike function 4, a thin-target spectrum integrated over all photon emission angles is
employed for two reasons. First, the angular spread of electrons is much larger than that for the
produced photons and can safely be assumed isotropic; therefore, an integral over all electron
angles (even if one is only interested in their contribution to forward photon production)
becomes an integral over photon emission angles, as argued by Desobry and Boyer (1991).
Second, the function is required to be flexible enough to handle off-axis spectra and spectra
averaged over large fields (not just good-beam-geometry central-axis spectra), and thus an all-
angle formula is more appropriate. Although an all-angle formula overestimates the photon
lower energy component in the forward direction (because in reality lower energy photons are
more isotropic than higher energy ones), this overestimation is naturally compensated for in
three ways: (1) lower energy photons are overattenuated by the full target thickness because
in reality they are produced deeper in the target; (2) they are preferentially eliminated by the
flattening filter (if it exists); and (3) the beam softening due to scatter by the target and/or the
flattening filter is ignored.

http://www.itl.nist.gov/div898/handbook/eda/section3/eda366a.htm
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Table 3. Parameterization of μW (E) and μAl(E) for possible use in the proposed function. Over
the energy ranges shown, the typical local error using the standard NIST energy grid is 0.5%.
The lower energy limits correspond to the highest energy characteristic peaks of the respective
materials. Below the lower energy limits the parameterization of μ is still smooth but deviates
from the true values with insignificant effect on the spectral fit quality.

j 0 1 2 3 4 5

μW (E) = exp
[∑2

j=0 aj Ej
/ ∑3

j=0 bjE
j
]
, for 69.5 keV � E � 30 MeV

aj 6.575×100 –3.623×101 –1.578×100 – – –
bj 1.000×100 9.667×100 7.132×10−1 –3.778×10−4 – –

μAl(E) = ∑5
j=0 aj (ln E)j

/ ∑5
j=0 bj (ln E)j , for 1.56 keV � E � 30 MeV

aj 6.107×10−2 1.694×10−2 –2.390×10−3 3.116×10−4 5.286×10−4 2.507×10−5

bj 1.000×100 7.769×10−1 2.434×10−1 3.838×10−2 3.042×10−3 9.686×10−5

Using a specific all-angle formula (e.g. equation 3BS(e) as done in function 5) would
be unjustifiably restrictive for a function that is phenomenological anyway. Therefore, only
the patterns that are common to most of the all-angle formulae are extracted. Although the
extreme relativistic approximation breaks down at both ends of the spectrum, the discussion
below is based on only the thin-target formulae that use this approximation because those
that relax it (e.g. equation 3BN in Koch and Motz (1959) or equation (24) in Desobry and
Boyer (1991)) are overly complex to parameterize. In tables 1 and 2 of Koch and Motz
(1959), apart from physical constants and keeping terminology differences in mind, most of
the 3Bx and 3Cx all-angle formulae contain the three terms: 1, Et−E

Et
and

(
Et−E

Et

)2
. The first

and third terms almost always have a fixed ratio to each other, while the second is scaled by
various constants, approximate screening functions and Coulomb corrections. With simple
algebraic manipulation it is justifiable to include the parameterized term

[
1 + C ′

1
E
Et

+
(

E
Et

)2]
in the proposed function. Similarly, the term Et (Et−E)

E
(a bremsstrahlung impact parameter)

appears with various screening functions and Coulomb corrections added to it inside and
outside a logarithmic function. Therefore multiplying the square bracket just mentioned by[

ln
(

Et (Et−E)

E
+ C ′

3

)
+ C ′

2

]
is reasonable. Our optimization results show that replacing Et with

Ee has virtually no effect on the %� metrics of fit quality, and it is thus adopted for simplicity,
i.e. the function includes

[
1 + C ′′

1
E
Ee

+
(

E
Ee

)2][
ln

(
Ee(Ee−E)

E
+ C ′′

3

)
+ C ′′

2

]
. Imposing the physical

condition ψ(Ee) = 0 requires that C ′′
3 = exp(−C ′′

2 ). To choose an optimum C ′′
2 , the proposed

function is fit to the benchmark set of spectra for a range of C ′′
2 values within [–3.0, 3.0] in

0.25 increments. Figure 1 shows that C ′′
2 = −0.5 (and consequently C ′′

3 = 1.65) achieve
the lowest %� metrics; therefore, they are used in the proposed function (function 12 in
table 2), and they can be thought of as average nuclear screening and/or Coulomb correction
factors.

Positrons are created in pair production events in various linac components; they later
annihilate producing a discrete 511 keV peak superposed on the bremsstrahlung continuum.
If desired, this 511 keV peak can be modelled in any functional form using a Dirac delta
function, δ(E − E511), at the centre of the 511 keV bin with amplitude C4/dE511, where C4 is
a free parameter representing the integral energy fluence contribution of the 511 keV photons,
and it is bin-size independent (function 13 in table 2).

Requiring ψ(Ee) to be zero is reasonable. However, the differential bremsstrahlung
cross-section at Ee is actually finite (Matthews and Owens 1973). Moreover, in clinical linacs
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Figure 1. Optimum value of the constant C′′
2 (discussed in section 2.2) for the proposed function.

Notation is defined in table 1.

the incident electron beam has an energy spread that typically varies from a full-width at half-
maximum (FWHM) of ∼3% (e.g. Varian beams—Cho et al (2005)) up to ∼20% (e.g. Siemens
beams—Sawkey and Faddegon (2009)). These two considerations make the maximum photon
energy, Em, inherently ill defined for typical clinical linac spectra. However, using a function
with a clear endpoint energy (e.g. the proposed function) is still preferred over using one that
tails off without a definitive Em (e.g. functions 6, 7 and 11) because it makes unfolding spectra
from dosimetric measurements more sensitive to the higher end of the spectrum (Ali and Rogers
2011a). If desired, the energy spread of the incident electron beam can be incorporated into
the functional form by replacing ψthin(E,Cf s, Ee) with

∑
j wj ψthin(E,Cf s, Ej

e ), where the
spectrum is assumed to be composed of a finite number of spectra with different endpoint
energies, E

j
e , and weights, wj . Values of E

j
e s are related to the mean electron energy, Ee,

through a parameter representative of the energy spread which can be an additional free
parameter if not known (function 14 in table 2). For instance, for Gaussian energy spread
with a standard deviation σ , a possible incorporation of the energy spread within 2σ would be
E

j
e = Ee ± 0.5σ and Ee ± 1.5σ , with wj (from the standard normal distribution) = 0.34 and

0.16, respectively. The free parameters are then Cfs, Ee and σ . This approach is valid for any
energy spread that can be characterized with one free parameter (not necessarily Gaussian).

2.3. Benchmark set of spectra

Previous studies either did not validate their proposed functions or they tested them only against
spectra which were limited in number, diversity, accuracy, precision and/or energy resolution.
This can mask limitations in the functions such as inflexibility or instability. The test spectra
also varied among different studies, which precludes meaningful evaluation of the functions
against each other. In this study, our benchmark set consists of 65 validated Monte Carlo
spectra with high-energy resolution and high statistical precision. The set covers the energy
range of interest in radiation therapy (3.5–30 MV). It includes spectra from Varian, Elekta,
Siemens, Tomotherapy and Cyberknife machines (with a flattening filter (WFF), flattening-
filter free (FFF), on- and off-axis, treatment and imaging modes), and systematic sets of spectra
from the research linacs of the National Research Council of Canada (NRC) and the National
Physics Laboratory (NPL) in the UK. Off-axis spectra go as far off-axis as clinically relevant
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(the periphery of a 40×40 cm2 field). The average statistical uncertainty in each bin is a few
tenths of a per cent for all spectra except for Tomotherapy (<1%). The following details on
how we generated the benchmark set are pertinent.

1. Varian, Elekta and Siemens spectra. Sheikh-Bagheri and Rogers (2002a, 2002b) used
EGS4 (Nelson et al 1985) to model nine common linac beams (Varian Clinac 4 MV and Clinac
2100C/2300C 6, 10, 15 and 18 MV; Elekta SL25 6 and 25 MV; and Siemens KD 6 and
18 MV) using the proprietary specifications from the manufacturers. Incident electron
parameters were determined from best fits to generic depth-dose and profile data. In our
study, the nine beams WFF are re-simulated with EGSnrc (Kawrakow 2000, Kawrakow and
Rogers 2007) for better accuracy and precision. Incident electron parameters are the same as
those in the original study (table 1 in Sheikh-Bagheri and Rogers 2002b). The FWHM of the
Gaussian energy spread ranges from 3% (Varian) to 17% (Elekta). Within a 40×40 cm2 field at
100 cm SSD, on- and off-axis spectra are extracted in, respectively, a 100 cm2 central area
and a rim between radii of 15 and 20 cm. Each spectrum has 100 equal-size energy bins
(bin widths range from 40 to 200 keV, depending on the maximum photon energy of each
spectrum).

There is increasing interest in FFF linacs because of their advantages with intensity
modulation and small beamlets. In this study, the flattening filters in the nine beams above
are removed, and on- and off-axis spectra (defined as above) are extracted. Typically, when
the flattening filter is removed a medium-Z plate is added for different reasons. However, its
exact material, thickness and position are currently in a state of flux (Georg et al 2011). In this
study, for the Varian and Elekta 6 MV beams, copper plates of respective thicknesses 2 and
6 mm (Georg et al 2011) are placed roughly at the centre of mass of the removed flattening
filter. No plate is added for the Siemens 6 MV beam (Siemens, personal communications). In
total, 36 clinical spectra are generated (nine beams, WFF, FFF, on- and off-axis).

2. NRC Vickers spectra. Faddegon et al (1990, 1991) used the NRC Vickers linac to carry out
absolute direct measurements of forward and angular bremsstrahlung production from fully
stopping thick targets. Pre-target material was minimal and the little post-target material was
corrected for. The spectra are useful for the benchmark set because they are accurate, different
from typical clinical spectra, and systematically cover a range of beam energies (10–30 MV in
5 MV increments) and targets (beryllium, aluminium and lead). However, they are too noisy
to rigorously test the functional forms. Therefore, in this study, we model the original setup
with EGSnrc using the details given in Faddegon et al (2008) for geometry, materials, revised
electron energies (10.09, 15.18, 20.28, 25.38 and 30.45 MeV—independently known using a
calibrated bending magnet) and energy spread (Gaussian with 1.5% FWHM). Only the central
axis spectra (within a 0.5◦ cone half-angle) are generated. Each spectrum has between 55 and
110 energy bins of variable size to exactly match those of the measured spectra. Excellent
overall agreement is obtained between our Monte Carlo results and the experimental spectra,
with beryllium exhibiting the worst agreement (similar to the results in figure 8 of Faddegon
et al (2008)). In total, 11 central axis spectra are generated: one 15 MV spectrum with a
beryllium target and five MV spectra for each of the aluminium and lead targets.

3. NPL linac spectra. Walters and Rogers (2000) used EGS4 to model the NPL linac beams
and reported good agreement with measurements of %dd(10) and TPR20

10. Each beam has two
configurations: WFF alone (‘light’ filtration) and WFF plus 5–14 cm of aluminium filtration
(‘heavy’ filtration). Spectra were averaged over the ∼105 cm2 central field at ∼119 cm SSD.
The spectra are useful for our benchmark set because they systematically cover a range of
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beam energies (4, 6, 8, 10, 12, 16 and 19 MV) and filtration. In this study, we re-simulate
the NPL linac beams with EGSnrc for better accuracy and precision using the details given in
Walters and Rogers (2000) for geometry, materials and incident electron parameters (conical
beams of monoenergetic electrons with the nominal energy and no energy spread). In total,
14 spectra, each with 100 equal-size energy bins, are generated.

4. Spectra of dedicated IMRT linacs (Tomotherapy and Cyberknife). Jeraj et al (2004) used
MCNP4c3 (Briesmeister 1999) to model the unflattened beam of a Tomotherapy unit using
the exact (and proprietary) mechanical and material specifications. Spectra were reported
for the treatment mode and the MVCT imaging mode. The tuned incident electron energies
were, respectively, 5.7 and 3.5 MeV, and the energy spread was Gaussian with 12% FWHM
(σ = 5 %). Our benchmark set includes two treatment spectra averaged over 4×5 cm2 areas
at 85 cm SSD and centred at 2.5 and 17.5 cm off axis, respectively, and one imaging spectrum
averaged over a central area of 4×40 cm2 at the same SSD. The spectra (provided by R Jeraj)
have between 40 and 70 equal-size energy bins. Araki (2006) used EGSnrc to model the
unflattened beam of a Cyberknife unit, with a tuned incident electron energy of 6.7 MeV and
a 3% FWHM Gaussian energy spread. Our benchmark set includes the central-axis spectrum
(provided by F Araki), which is averaged over a 6 cm diameter area at 80 cm SSD and has
140 equal-size energy bins.

2.4. Fitting

Each function in table 2 is fitted to each spectrum in the benchmark set. The standard
Levenberg–Marquardt least-squares minimization algorithm (Press et al 1992) is used to
minimize %�s(ψ) (defined in table 1). Uniform weights for all energy bins are used because
the statistical uncertainty on all bins is roughly the same. Analytical first-order derivatives
with respect to each free parameter are calculated, and they take the dynamic normalization
(through ψs

av) into account. When a function is highly nonlinear with respect to a parameter,
an exhaustive grid search on that parameter is performed while minimizing %�s(ψ) with
respect to all other parameters. In such a case, the confidence limits on the grid-searched
parameter can be estimated using the graphical χ2

min + 1 criterion (Rogers 1975). In function
6, C1 has to be grid-searched because of the discontinuity of ∂ψ/∂C1|E=C1 . Functions 2 and 5
exhibit particularly poor robustness because of the large correlation among the free parameters
and the strong nonlinearity without an intuitive search domain. In function 8, the quality of
fits is sensitive to the value used for El (entered manually in this study for each spectrum);
this represents a limitation of this function because in a typical spectral unfolding problem
the minimum energy is unknown. In function 11, the restriction on C2 to be smaller than the
smallest energy in the spectrum (i.e. C2 < El) is not always fulfilled during iterations; this
can lead to negative arguments under the square root, which is problematic for unconstrained
minimization. Also, the strong nonlinearity of function 11 makes it sensitive to the initial
estimates of the free parameters, and expressing C4 and C5 as fixed ratios of Em (section 2.1)
does not eliminate this sensitivity. In functions 4, 9 and 12, the XCOM μ values are used
(http://physics.nist.gov/xcom), with linear interpolation of log E and log μ. In functions 9
and 10, respectively, copper and steel (used by the original authors) are used for all spectra.
Minimization for most functions is virtually instantaneous, but it is slower for functions 5
and 10.

Five %�s metrics (defined in table 1) are used to quantify the quality of fit of a function
to a given spectrum, s. Since Em is ill defined for typical clinical linacs (section 2.2), the
fitted endpoint energy is compared to both the true Ee (through %�s(Ee)) and the true Em

http://physics.nist.gov/xcom
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Table 4. Overall quality of fit of different functions to the benchmark set of spectra. Notation is
defined in table 1. Parameterized thick-target formulae (function 3 and the like) are not analysed
(section 2.1). The ‘robustness’ column qualitatively describes the performance of a function in
spectral fitting/unfolding.

%�(X), X is

Index Author(s) np Robustness ψ Ee Em Emp Eav

1 Dance and Baggerly (1965) 2 Good 27.7 3.9 6.8 69.3 38.4
2 Tarasko et al (1988) 6 Poor 15.2 20.8 16.3 45.4 17.4
3 Ahnesjö and Andreo (1989) 4 – – – – – –
4 Baker (1993); Baker et al (1995) 4 Good 2.5 1.9 4.4 9.1 1.2
5 Krmar et al (1993) 4 Poor 2.2 2.8 6.2 3.6 0.8
6 Bloch and McDonough (1998) 2 Fair 13.2 29.7 25.1 40.0 5.9
7 Fippel (1999) 3 Good 18.6 43.9 38.8 32.1 7.3
8 Sawchuk (2001) 2 Fair 27.0 19.6 15.3 62.0 10.7
9 Hinson and Bourland (2002) 2 Good 10.1 5.9 6.1 24.6 3.4

10 Sikora et al (2007) 4 Fair 6.6 6.5 5.0 12.2 5.2
11 Davidson et al (2008) 5 Poor 3.0 7.1 3.4 8.5 0.8
12 This study 4 Good 1.7 1.4 4.3 3.9 0.6
13 This study (with 511 keV) 5 – 1.5 1.4 4.3 3.6 0.6

(through %�s(Em)). In functions 6, 7 and 11, the fitted Em is technically undefined because
the functions have indefinite tails. Therefore an arbitrary cutoff (E at which ψ ≈ 3 %ψpeak)
is used to represent the fitted Em. The five ‘overall’ %� metrics (defined in table 1) facilitate
quantitative and compact comparison of the functions against each other.

The robustness of the functions when used for spectral unfolding from dosimetric data is
qualitatively investigated as follows. Analytical transmission data are generated from known
point-source spectra and then smeared multiple times with Gaussian noise typical of a rigorous
experimental setup. The noisy transmission data are used to unfold the spectra, and the range
of variability in the unfolded spectra is taken as a measure of robustness.

3. Results and discussion

The five overall %� metrics for the quality of fits of different functions to the benchmark set
are shown in table 4. The following observations can be made from the data in the table. The
large %� values for the functions with less than four free parameters (functions 1, 6, 7, 8 and
9) indicate that a truly accurate and flexible function requires at least four free parameters, one
of which is the endpoint energy. The proposed function is robust and offers the lowest %�

values, indicating that it is the most accurate and flexible, and thus suitable for use in spectral
unfolding problems.

Functions 4, 5 and 11 give the closest %� values to the proposed function. Therefore
some variations of them are considered here as follows. In function 4, when 1/E is replaced
with μAl(E), the five %� values in table 4 change from (2.5, 1.9, 4.4, 9.1, 1.2) to (2.2, 1.4,
4.4, 7.8, 1.2). In function 5, when C2 is fixed to an average value, the robustness improves
but the quality of fits worsens significantly. Also, in function 5, when the exponential term
is replaced with exp(−μW(E)C1 − μAl(E)C2), making it a three-parameter function, the
robustness improves but the %� metrics worsen from (2.2, 2.8, 6.2, 3.6, 0.8) to (4.6, 4.6,
7.9, 12.8, 2.4). This indicates that using a specific thin-target formula as given is restrictive
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Figure 2. The relation of C4 and C5 to Em in function 11. Values that achieve the best overall
performance against the benchmark set of spectra are C4 = 0.90 Em and C5 = 0.04 Em. The
values used by the original authors were C4 = 0.85 Em and C5 = 0.15 Em.

for the purpose of parameterization. In function 11, the %� metrics in table 4 are achieved
when both C4 and C5 are free parameters and independent of each other. When they are fixed
to, respectively, 0.85 Em and 0.15 Em (as done by the original authors—section 2.1) and Em

is treated as a fourth free parameter, %�(ψ) appreciably worsens from 3.0 to 6.9. To better
tune the function, we extracted the ratios of C4 and C5 to Em from the free search of the two
parameters, as shown in figure 2. The values C4 = 0.90 Em and C5 = 0.04 Em achieve the
best overall %� values, (3.2, 7.4, 4.2, 8.1, 0.9), which are close to those in table 4, (3.0,
7.1, 3.4, 8.5, 0.8), but with one less free parameter. Based on this discussion and the poor
robustness of functions 5 and 11, it can be concluded that function 4 by Baker (1993) offers
the second best overall performance.

Examples of the fits of the proposed function (function 13 in table 2) to the benchmark
set are shown in figure 3. The fits of that function to the entire benchmark set are available
on the web (Ali and Rogers 2011b). Figure 3 demonstrates the overall excellent ability of
the function to fit different classes of spectra. Panel (a) shows fits to the spectra of linacs
with different head designs. Panel (b) shows fits to the spectra of a given linac beam on-
and off-axis, WFF and FFF. Although not obvious in panel (b), the overall quality of fits are
marginally better for the central axis spectra than they are for the off-axis ones because the
structure of the function is heavily dominated by the forward component. Similarly, fits to
the spectra of linacs WFF are marginally better than fits to FFF spectra because the flattening
filter reduces the effects of the approximations in the function (section 2.2). Panel (c) shows
that for spectra with small electron beam energy spread (3% FWHM for Varian 4 MV), the
endpoint energy is fitted accurately, whereas for spectra with large spread (17% FWHM for
Elekta 6 MV and 14% FWHM for Siemens 6 MV), the fitted endpoint energy correlates best
with the mean incident electron kinetic energy, Ee. This can also be seen in table 4 where
the functions that are based on monoenergetic thin-target spectra (functions 4, 5, 12 and 13)
have %�(Ee) � %�(Em). Panel (d) shows fits to a class of spectra different from typical
clinical spectra. The fit of the function to the lead target spectrum is excellent. The fit to the
beryllium spectrum is significantly worse than any other fit in the entire benchmark set (with
%�s(ψ) = 4.0 %, while the mean %�(ψ) when function 13 is fitted to all spectra is 1.5%). It
is interesting that the disagreement between the EGSnrc calculations of the beryllium spectrum
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Figure 3. Example fits (solid lines) of the proposed function (function 13 in table 2) to 16 Monte
Carlo spectra (dots) from the benchmark set of 65 spectra. The fits are typical of others. The terms
‘central’, ‘off-axis’, ‘WFF’ and ‘FFF’ refer to, respectively, a central-axis spectrum, an off-axis
spectrum, with flattening filter and flattening-filter free. For graph clarity, the zero energy is offset,
only every other original Monte Carlo point is shown except around the 511 keV peak, and in
panels c and f two spectra are scaled down by a factor of 3. Spectra are normalized to unit energy
fluence. See section 3 for the significance of the examples in each panel.
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and the direct NaI measurements is also larger than it is for the aluminium and lead spectra
(section 2.3). Replacing μW(E) in the function with μBe(E) does not improve the fit quality.
Panel (e) shows excellent flexibility of the function to fit very different spectra created from
the same electron beam but with different filtration conditions (14 cm of aluminium added).
Panel (f) shows the ability of the function to fit the treatment and imaging spectra of dedicated
IMRT machines. In all panels, fits to the 511 keV peak are included, but the peak is visible
only in panels (b) and (c).

Examples of the fits of different functions to the benchmark set are shown in figure 4.
The following observations can be made using figure 4 and table 4. In panel (a), the fits of
function 1 are clearly different from the original spectra, and the function is unable to produce
a reasonable inflection point. The %� values for function 1 are large except for %�(Ee),
which is reasonable because of the condition ψ(Em) = 0. Function 9 is similar in form to
function 1, but it performs better because the argument in its exponent is more representative
of linac components. In function 8, the quality of fit indicates that a trigonometric function
does not provide a particularly good representation of linac spectra. The fit quality with
function 8 is significantly worse for softer beams (clinical FFF spectra, off-axis spectra and
the Vickers research spectra). In panel (b) of figure 4, function 2 does not produce particularly
good fits despite having the largest number of free parameters (with the attendant robustness
issues). Also in panel (b), the Gaussian nature of function 6 at the higher end of the spectrum
leads to long unrealistic tails (truncated in the graph) and thus to large %�(Em) and %�(Ee)

values. Although representing the lower energy part in function 6 by a straight line is generally
reasonable, we found empirically that it is problematic when Emp/Em < 0.1 (i.e. softer beams)
as seen by the large %�(Emp) value for function 6 in table 4. Panel (c) shows fits of functions
7 and 10 together because the latter was introduced as more realistic than the former (at
the expense of an additional fit parameter). Function 7 has long high-energy tails and thus
large %�(Em) and %�(Ee) values (similar to function 6 in panel (b)). The effect of the
explicit high-energy cutoff in the definition of function 10 is obvious in the fit. Panel (d)
shows that the fits of function 4 to the central axis spectra are almost identical to those of
the proposed function, but the fits to the off-axis spectra are worse. This is a direct result of
the use of a forward-directed thin-target spectrum in function 4 as opposed to the use of the
patterns common in thin-target spectra, integrated over all photon emission angles as done in
the proposed form. Panel (e) shows that the fits of function 5 are comparable to those of the
proposed function, except that function 5 is not robust. When the exponential term is changed
to improve robustness, as discussed earlier in this section, the fit quality deteriorates, as shown
in panel (e). Panel (f) shows that function 11 matches very well the higher end of the spectra
that have large energy spread (the Siemens 6 MV in the panel, with 14% FWHM), whereas the
proposed function produces a hard cutoff at an effective Ee. However, function 11 produces
the same tail whether or not the original spectrum has it, as shown for the NPL spectrum which
has virtually no spread. The quality of fits of function 11 varies among spectra (as seen in
panel (f)) and the function typically performs worse for FFF spectra compared with spectra
WFF (not shown).

To demonstrate the effect of different spectral fits of a given spectrum on depth-dose
curves, EGSnrc is used to calculate central-axis depth-dose curves in a 10 × 10 cm2 field for
the Varian 6 MV beam WFF using the original spectrum and the fits of all functions. The
effect is quantified using the changes in the depth of the maximum dose, dmax, and in the
per cent depth dose at 10 cm, %dd(10), and at 20 cm, %dd(20). For functions with %�(ψ)

values of only a few per cent (see table 4), dmax remains within 0.5 mm of its true value; the
%dd(10) and %dd(20) values change by only 0.2% (relative to the maximum dose of 100). For
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Figure 4. Same as figure 3 but for functions 1 through 11. The fits of the proposed function
(function 13 in table 2) are also shown for comparison.

functions with larger %�(ψ) values, dmax changes by up to 2 mm; the %dd(10) and %dd(20)
values change by up to 3%.

The largest deviations in spectral fits when using the simplest version of the proposed
form (function 12 in table 2) are typically for spectra with large electron beam energy spread.
For such extreme cases, our EGSnrc calculations of narrow-beam transmission data and
depth-dose curves show that dmax remains within 1 mm of its true value, and the values of
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Figure 6. The ability of the proposed function (function 13 in table 2) to model off-axis softening,
with and without a flattening filter. The legend gives the radii of the annulus within which each
spectrum is obtained from the phase space of a 40×40 cm2 field at 100 cm SSD. Spectra are
normalized to unit energy fluence.

%dd(10), %dd(20) and the smallest transmission signals change by ∼0.2%. This level of type-
B uncertainty is well within the range of the uncertainty of rigorous experiments; therefore,
the function can be deemed accurate for spectral unfolding purposes and for representing
spectra in dose distribution calculations. If a particular application requires a more stringent
representation of the spectrum, then the contribution of the 511 keV annihilation peak and
the energy spread of the incident electron beam can be modelled (function 14 in table 2).
For instance, when the simple Gaussian model in section 2.2 is applied to the Elekta 6
MV spectrum, and σ (or FWHM) is treated as a free parameter, the minimization returns
the true FWHM and the %�s(ψ) reduces from 2.4% to 0.6%—see figure 5. Although the
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Table 5. Parameters of fitting the proposed functional form (function 13 in table 2) to the energy
fluence spectra, ψ(E), generated in this study using EGSnrc for the nine validated linac beams
from Sheikh-Bagheri and Rogers (2002a), with their flattening filters present. Notation is defined
in table 1. The values given for C4 (× 102) should be divided by 100 to give C4, and they are
bin-size independent.

C1 C2 C3 C4(×102) Ee %�s(ψ)

(MV) (g1/2cm−1) (g1/2cm−1) – (MeV) (MeV) (%)

Varian Clinac
4 3.824 3.522 –1.222 0.308 3.75 0.5
6 1.222 5.147 –1.186 0.881 5.76 0.5

10 0.702 6.226 –1.285 3.891 10.46 0.7
15 4.614 3.804 –1.060 14.034 14.58 0.5
18 3.347 5.847 –1.228 43.160 18.33 0.8

Elekta SL25
6 1.320 5.072 –1.109 2.526 6.49 2.4

25 0.000 7.504 –1.274 57.864 19.02 0.9
Siemens KD

6 1.184 4.840 –1.161 1.416 6.83 1.9
18 1.213 6.142 –1.126 12.522 14.94 2.2

511 keV contribution and the electron beam energy spread can be extracted from directly fitting
the spectrum to the proposed form, they cannot be unfolded as additional free parameters from
transmission measurements or depth-dose curves because, as just discussed, their contribution
to the measured signals is very small.

Figure 6 demonstrates the excellent ability of the proposed function to model off-axis
softening and to model spectra with slight energy variations. All the fit parameters smoothly
vary with off-axis distance; therefore, unfortunately, no single free parameter can be used to
fully characterize off-axis softening.

There has been a strong interest in the spectra of nine common linac beams modelled by
Sheikh-Bagheri and Rogers (2002a) which modelled nine common linac beams. The spectra
have been widely used in various dosimetry contexts and they have been recommended by some
TPSs (e.g. XiO) as starting spectra for beam modelling. For this reason, the fit parameters for
those nine beams WFF, as simulated in this study using EGSnrc, are given in table 5. Except
for Ee, the parameters should not be interpreted to represent actual physical quantities.

4. Conclusions

In this study, 11 spectral functional forms from the literature are quantitatively compared
using a comprehensive benchmark set of spectra. A new function is proposed which offers
improvements over existing ones. It is shown that a truly flexible function requires at least four
free parameters, one of which is the endpoint energy. Physics-based functions are preferred
because they do not produce unphysical shapes. Parameterizing thick-target formulae is shown
to be unnecessary. The four-parameter version of the proposed function reproduces the energy
fluence values in each bin for the benchmark set with a normalized root-mean-square deviation
of 1.7%. The mean incident electron kinetic energy, maximum photon energy, most-probable
energy and average energy are reproduced, on average, within 1.4%, 4.3%, 3.9% and 0.6% of
their true values, respectively. The accuracy and robustness of the proposed function make it
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suitable for unfolding linac photon spectra from dosimetric measurements such as transmission
data or depth-dose curves without requiring a priori knowledge of the incident electron beam
or the linac head components.
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