Quick Solution #10

problem #58 (Chapter 9): $V_{cm^2} = 2 a l = 2(g \sin \theta) l/(1 + \frac{1}{2})$. Then $V_{cm} = 23 m/s$.

problem #74 (Chapter 9): (a) When the cylinder is in equilibrium $\Sigma \tau = 0$ (around CM) and $\Sigma F_x=0$ along the plane: $T = \frac{1}{2}Mg \sin\theta$. (b) $\Sigma \tau = I \alpha$ (around CM) and $\Sigma F_x=ma_x$ along the plane: $a_x = 2(2T - Mg \sin\theta) / 3M$.

problem #22 (Chapter 10): $\vec{\tau} = -(\text{mgvt } \cos\theta)\hat{k}$.

problem #32 (Chapter 10): Use energy conservation to find the speed of the point mass before it strikes the bar: From the conservation of angular momentum of the system of mass and bar about the pivot point *A* during the collision, we have $\omega = 9.4 \text{ rad/s}$.

problem #50 (Chapter 10): First use the expression $v^e = v_o^2 + 2ax$ to find the speed for the of the block after it travels a distance *d*. Then use the expression $\omega = v/r$ and $I = \frac{1}{2} MR^2$. Applied the work-energy theorem to the system of cylinder and mass to relate the work done by friction to the potential and kinetic energy: $\mu = 0.38$.

problem #56 (Chapter 10): $\Sigma T = I \alpha$ and $\Sigma F_y = ma_y$ (a) $a_y = 1.4 \text{ m/s}^2$ (b) Solving $y = y_0 + v_{0y} t + \frac{1}{2}a_y t^2$ gives t = 1.5 s.