MSW Scan Using Extended Maximum Likelihood Method

Gordana Tešić, ECG meeting, Carleton University, November 12, 2003

Oscillation Parameters: dm² and tan²θ

- By using two oscillation hypothesis, we can calculate expected neutrino yield in each point on MSW plane and compare it with the experimental data
- In order to produce exclusion plots on MSW plane and to extract the best estimates for the oscillation parameters we can use either χ^2 or EML method

$$L = -2/nL = 2*\nu_{tot} - 2*\Sigma n_k/n\nu_k$$

- $v_{tot}(dm^2, tan^2\theta, \phi_B^8)$: total expected yield
- n_k: measured yield in bin k

Why EML?

- Instead using just energy, we can include cosθ_{sun}, isotropy and radial information in the fit
- The variances of the estimates for the osillation parameters should be reduced by including the information from total number of events (extended part of the likelihood function)

MSW scan with SNO pure D₂O day/night or averaged spectra

- SNO spectra : NC, CC, ES and backgrounds (LE and NC)
- Precalculated shape tables for the expected yield which are weighted for the real zenithlivetime distribution
- Radial cut, correction factors (CC, NC, ES: both for day and night), NC detection efficiency factor
- Backround pdf's included in calculation of the expected yield

- Fixed boron eight flux (SSM value)
- day/night livetime corrections
- Fit only for the flux and energy spectrum
- No systematics, yet...

Contour plot

SNO pure D₂O day/night data:

Likelihood projection plot

ro come

- Inclusion of the systematics (most important)
- Inclusion of zenith-energy, isotropy and radial information
- Fit for the combined measurements
- Unbinned fit
-