Measure of Radioactivity on Acrylic exposed to ²²²Rn Anna Gustavsson IAESTE Placement Student Queen's University 12 November 2003 ## Background - Background in SNO detector - Hypothesis: come from alpha decay of ²¹⁰Po - Acrylic exposed to ²²²Rn in the past - 222 Rn $\rightarrow \alpha$ -decay \rightarrow 218 Po ## Experiment - Put acrylic in a ²²²Rn enriched environment - Apply electric charge to acrylic to attract ²¹⁸Po (positively charged) - Calculate what fraction of ²¹⁸Po stick by - Calculate how many ²¹⁸Po there are in vessel that could stick by - Observe number of ²¹⁸Po and ²¹⁴Po that decay ## Experimental Setup – Radon "bath" ## Monitoring the decay ### **Problems** - Calculating the concentration of ²²²Rn in vessel holding acrylic - Concentration measured by Pylon TEL detector - Observes the total number of α-decays - Large volume - Unidentified behavior ## Rough Estimate - Assumptions - Constant concentration of ²²²Rn throughout "bath" - Used average concentration - ²¹⁸Po sticks evenly across surface of acrylic - Ignoring edge effects - $-\alpha$ -detector 100% efficient #### Fraction that sticks vs Voltage ## Play with numbers - SNO detector - Volume ≈ 905 m³ - Inside surface area ≈ 452m² - ²²²Rn concentration in air ≈ 3pCi/I - Exposure time: 2 years - $\approx 5\%$ sticks - ⇒ Activity of ²¹⁰Po after 4 years: 0.3 Bq/m³ ## Future plans - Understand TEL's behavior - Improve accuracy of concentration in vessel used for calculation - Possibility of replacing TEL with α-counter investigated - Analyse spectra wrt time - Read out spectra at intervals by running procedure file in MT on top of MAESTRO-II - Set up two counters to measure spectra of both pieces of acrylic in "bath" - Position dependent - What effect does rinsing the acrylic after exposure have