
QSigEx Manual

Pierre-Luc Drouin
Alain Bellerive

Carleton University

December 16, 2005

Preface

As a summer student working on the Sudbury Neutrino Observatory (SNO) experi-
ment at Carleton University, I have been asked in the second half of summer 2002
to write a C++ package that would allow to extract neutrino fluxes from the detector
data. The package had to be designed such that it could be expanded by the users
and that its structure would be flexible enough to allow analysis changes without
code modifications. Under the supervision of Alain Bellerive, I have written what
became QSigEx 1.00. The package met the first design rule. However, due to the
limited time we had to write some important blocks of code, the program was not as
flexible and as user-friendly as it should.

In summer 2003, I decided to redesign the package. I wanted to increase the flexi-
bility of QSigEx, but also to incorporate more the ROOT classes into the code. I’ve
decided to store the information produced by the package into a ROOT TDirectory
structure, that would give to QSigEx a very user-friendly interface in comparison
to C-style arrays used in version 1.00. Finally, after three months of work, I got a
package that satisfied our objective.

I hope QSigEx will suit your needs!

Pierre-Luc Drouin
Ottawa, August 2003.

WEB

www.physics.carleton.ca/research/sno/anal/software/qsigex.html

Authors and Contributors

Alain Bellerive: Supervisor, librarian (2004), gaussian correlations

Mark G. Boulay: Contribution to QSigEx behaviour

Pierre-Luc Drouin: Code design and implementation

Darren Grant: Librarian (2002,2003), extended likelihood function coding

Kathryn Miknaitis: Librarian (2002,2003), contribution to QSigExFit class coding

Osama Moussa: Contribution to QSigExTHOps class coding

Ryan MacLellan: Contribution to QSigExDis and QSigExIO behaviour

ii

Contents

1 Introduction 1

2 Getting Started 3

2.1 QSigEx and ROOT . 3

2.2 Main Modules . 3

3 General Interface of QSigEx 5

3.1 Overview . 5

3.2 QSigExDirHandler: A Common Interface 5

3.2.1 void SetDir(TDirectory* folder) 6

3.2.2 TDirectory* GetDir() . 6

3.2.3 void LoadCardFile(const Char t* cardfilename) 6

3.2.4 void ClearCardBuf() . 6

3.2.5 Int t Get() . 6

3.2.6 void CleanDir() . 6

3.3 The Configuration File . 7

3.4 The TDirectory Structure . 8

3.4.1 “Cuts” TDirectory . 8

3.4.2 “Event Info” TDirectory . 8

3.4.3 “PDFs” TDirectory . 8

3.4.4 “Probs” TDirectory . 9

3.4.5 “Fit” TDirectory . 9

iii

1 Introduction

QSigEx is a package that can be used to estimate population parameters using a
sample of events. In particular, it estimates in which proportions some event groups
are present in the population. This situation arises often in particle physics in what
is called signal extraction, from which QSigEx borrows its name.

Let a population be composed of n groups. Each entry in the population has some
measurable characteristics, such that this entry can be described by a vector ~x,
where each xi coordinate (i = 1, 2, . . . ,m) corresponds to a specific observable. The
population entries of a given group have characteristic ~x values that allow to differ-
enciate the group from another one. Then, the entries in a group have a particular
distribution. In some cases, it is possible to predict the distribution associated
which each group (using Monte Carlo method for example). Provided these distri-
butions, the probability density of an event member of group Gj to have coordinates
~x is given by f(~x|Gj). In QSigEx, the function f(~x|Gj) is called the joint probability
density function for the group Gj, since it gives the probability density of an event
considering all its characteristics (~x).

In the case where all the groups are mutually exclusive (an entry member of group
Gj cannot be member of group Gk at the same time, for all j and k, j 6= k), the
probability density of an entry with coordinates ~x to be a member of any group is
given by:

f(~x) =
n∑

j=1

f(~x ∩ Gj) =
n∑

j=1

p(Gj)f(~x|Gj) (1.1)

where p(Gj) is the probability of an event to be member of group Gj. The set of
probabilities p(G1), p(G2), . . . , p(Gn), or some values function of these probabilities
(depending on the minimization function that is defined by the user) are the popu-
lation parameters that are estimated by QSigEx. They can be viewed as the fraction
of events which belong to a given group.

In a given group, the variables xi can be independent or not. When the variables are
considered to be independent, the function f(~x|Gj) (j = 1, 2, . . . , n) can be expressed
using the marginal probability density functions fi(xi|Gj) for each of these variables:

f(~x|Gj) =
m∏

i=1

fi(xi|Gj) (1.2)

In this expression, m is the number of dimensions of vector ~x used to fit the param-
eters.

Sometimes, only a pair of variables are significantly correlated. In this situation,
the user can choose to produce, using a method of his choice, a probability den-
sity function (PDF) fk, l ((xk, xl)|Gj) (k, l ∈ {1, 2, . . . ,m}) that would be equivalent to
fk(xk|Gj)fl(xl|Gj) if the variables were not correlated. In QSigEx, this is called a bidi-
mensional marginal probability density function, since it doesn’t take into account

1

all the variables. The joint probability density function f(~x|Gj) is then given by:

f(~x|Gj) = fk, l ((xk, xl)|Gj)
m∏

i=1
i6=k, i6=l

fi(xi|Gj) (1.3)

The procedure can be repeated with other pairs of variables, if these pairs are not
correlated to the other variables and also with triplet of variables if necessary.

When the correlations between the variables are generally strong enough to be con-
sidered, the information provided by the functions fi(xi|Gj) is not sufficient and the
joint probability density functions f(~x|Gj) must be defined using more sophisticated
methods. QSigEx can handle uncorrelated or correlated variables [3]. It can com-
pute joint probability densities using either unidimensional or multidimensional
marginal probability density functions.

2

2 Getting Started

2.1 QSigEx and ROOT

QSigEx relies on ROOT [4], the object-oriented data analysis framework developed at
CERN. Not only the functions used to generate the PDFs and the object containing
the sample data are ROOT objects; the QSigEx classes are themselves derived from
ROOT classes and their outputs are ROOT objects as well. It is important that
QSigEx users be familiar with ROOT before using QSigEx, considering how QSigEx
is based on this program.

2.2 Main Modules

As a QSigEx user, you will have to use a reduced number of classes. Among these
classes are the QSigEx main modules. Each of these modules accomplishes a spe-
cific task in the parameters fitting process. Here are the steps that are followed
in order to evaluate the population parameters as they are divided via the main
modules.

Module:

1. Since the variables xi of the population entries generally have values that are
contained in a certain range and since it is often impossible in practice to
predict the shape of their distribution for an infinite range of values, it’s usually
needed to define cuts that define regions of valid variables values.

2. A data sample must be loaded in QSigEx. The defined cuts are applied on this
sample to get a clean data sample.

3. The marginal PDFs are produced by QSigEx using the ROOT objects provided
by the user. These objects are usually generated using an analytical or Monte
Carlo method. The marginal PDFs are normalized by QSigEx according to the
defined cuts.

4. If the variables xi cannot be considered independent, information related to
their correlations is loaded by QSigEx.

5. Using the clean data sample and the marginal PDFs, the probability density of
each data event to have a value of xi for its coordinate i if the event belongs to
group Gj is computed for each species.

6. Using the probability densities computed at the preceding step, the joint prob-
ability density of each data event to have coordinates ~x if the event belongs
to species Gj is computed for each species. In the simple case where the vari-
ables xi are not correlated, this is simply the product of all marginal probability
densities of a given group for each of these species, as explained in section 1.

3

TFile f1("qsigex.root","NEW");

QSigExCuts cuts(&f1,"cardfile.dat");
cuts.Get();

QSigExCleanData cleandata(&f1,"cardfile.dat");
cleandata.Get();

QSigExTTreePDF pdfs(&f1,"cardfile.dat");
pdfs.Get();

QSigExGaussCor gcor(&f1);
gcor.Get();

QSigExProbs probs(&f1);
probs.Get();

QSigExGCJointProbs gcjprobs(&f1);
gcjprobs.Get();

QSigExFit fitter(&f8,QExtendedLikelihood,"cardfile.dat");
fitter.Get();

f1.Write();
f1.Close();

Figure 2.1: Example of QSigEx usage

7. Finally, the parameters are evaluated, using a minimization function defined
by the user and the joint probability densities computed at step 6.

Figure 2.1 shows an example of a standard run of QSigEx for correlated variables.
You can see the seven QSigEx classes instances that are created and for which a
Get() member function is called. The interface of QSigEx will be explained in more
details in the next section.

4

3 General Interface of QSigEx

3.1 Overview

As it has been explained in preceeding sections, QSigEx is divided in main modules
that each accomplish one of the six (or seven) steps needed to evaluate the parame-
ters. To perform this task, the modules need to share some information. To improve
the flexibility of the code and to allow the users to access the infomation easily, it is
done using a TDirectory structure. TDirectory is an important ROOT class that
is, among others, the class from which is derived TFile.

In QSigEx, a given main module doesn’t depend directly on another one. Instead,
each module reads the needed information and writes its results in the TDirectory
structure. It allows the developer to define and use a new module without having to
modify the others. Moreover, since all the main classes of QSigEx are derived from a
common abstract base class, the member functions of a module can be called using
a pointer to its base class, increasing the flexibility of the code.

All the information produced by the main modules is added to the TDirectory
structure, as standard ROOT objects (TTree, TF1, TNamed, etc.) or as QSigEx ob-
jects derived from TObject (example: QSigExDis derived classes). In all cases,
almost all the information can be easily accessed using a ROOT TBrowser object.
For example, the parameters values are written as TNamed objects, which title is the
fit value. Also, all the marginal PDFs, data marginal probability densities and joint
probability densities can be plotted by a simple mouse click in a TBrowser.

Since some initial information has to be provided to the main modules, the user has
to write configuration parameters in a file before to run QSigEx.

3.2 QSigExDirHandler: A Common Interface

QSigExDirHandler is an abstract base class for the main QSigEx classes. It pro-
vides a common interface for all these classes, such that the user already knows
the basic behaviour of the member functions of a main module before starting using
it. Another advantage of QSigExDirHandler is that it allows to hold a pointer to a
main class instance that has one of the six (or seven) roles described earlier without
hardcoding it’s class name. The following subsections describe the behaviour of the
pure virtual member functions declared in the QSigExDirHandler class, but also
some of the public member functions implemented in this class.

5

3.2.1 void SetDir(TDirectory* folder)

This function sets the address of the TDirectory instance that is used to hold
the information of QSigEx. This TDirectory is the root directory of the QSigEx
structure. A TFile pointer, or a pointer to an instance of any class derived from
TDirectory can be passed.

3.2.2 TDirectory* GetDir()

This function returns a pointer to the TDirectory instance previously set using
QSigExDirHandler::SetDir.

3.2.3 void LoadCardFile(const Char t* cardfilename)

This pure virtual member funcion reads the content of the configuration file which
filename is cardfilename and stores the information related to the module into its
internal member variables.

3.2.4 void ClearCardBuf()

This pure virtual member function erases the information held by the internal mem-
ber variables of the module where is stored the information from the configuration
file.

3.2.5 Int t Get()

This pure virtual member function uses the information stored in the internal vari-
ables of the module and from the TDirectory structure to accomplish the task
assigned to the module. The results of this task are stored in the TDirectory
structure.

3.2.6 void CleanDir()

This pure virtual member function removes all the previous results associated with
the current instance from the TDirectory structure. It also deletes the TDirectory
objects created by the instance.

6

ROOT file obj name
DATA_FILE SaltRunsApr25_Blind.root treeobj

name condition
cut rmax r<=550
cut temin teff>=5.5
cut itrmin itr>0.55
cut b14min b14>-0.12
cut b14max b14<0.95
cut ctmin cossun>=-1
cut ctmax cossun<=1

type group s.group obj name ROOT file inputs
pdf 1 TH1F cc cossun cc_cossun pdfs.root cossun
pdf 1 TH2F cc b142d cc_b142d pdfs.root b14 teff

pdf 1 TH2F es b142d es_b142d pdfs.root b14 teff
pdf 1 TH1F es cossun es_cossun pdfs.root cossun

pdf 1 TH2F nc b142d nc_b142d pdfs.root b14 teff
pdf 1 TH1F nc cossun nc_cossun pdfs.root cossun

parameter name active start min max step
flux alpha_cc 1 500 0 1000000 0.01
flux alpha_es 1 500 0 1000000 0.01
flux alpha_nc 1 500 0 1000000 0.01

Minuit algorithm "UP" value
minimizer MIGrad 1

Figure 3.1: An example of a QSigEx configuration file

3.3 The Configuration File

To configure QSigEx, the user has to create a configuration file (card file). Some of
the main modules need to read parameters from this file and some other do not.
The configuration file entries format depends also on the main module. The user
should look at the QSigEx autogenerated HTML [2] documentation produced with
ROOT to learn in details the card file syntax. Figure 3.1 shows a configuration file
example.

7

3.4 The TDirectory Structure

The main modules produce results that are stored in the QSigEx TDirectory struc-
ture. A pointer to the root of this structure has to be passed to initialize the classes
derived from QSigExDirHandler. Each one of these classes modifies the structure,
by adding subdirectories and other types of objects. Even if the TDirectory struc-
ture can differ depending on the specific classes that are used to get the parameters
values, there are some subdirectories of this structure that are created indepen-
dently of the main modules combination that is used. For more details on the spe-
cific interface of a given class, please refer to the QSigEx autogenerated HTML [2]
documentation. A description of the common QSigEx directories is provided in this
section. The module numbers are the ones described in section 2.2.

3.4.1 “Cuts” TDirectory

The “Cuts” TDirectory is created by a module 1. It contains the subdirectories
“Equivalences” and “Cuts Expressions” that are both used by modules 2 and 3 to
apply cuts. The first subdirectory contains a set of formulæ that allow to simplify the
cuts expressions. One equivalence, for example, can combine the variables x, y and
z to express the radius r as

√
x2 + y2 + z2. A cut, defined in the “Cuts Expressions”

TDirectory, can use this equivalence to express limits on the radius values.

3.4.2 “Event Info” TDirectory

The “Event Info” TDirectory contains the information related to the data sample
used in the fit. Only the events within the predefined cuts are written in this direc-
tory. The information is written by a module 2 as a TTree which branches contain
Float t values.

3.4.3 “PDFs” TDirectory

This TDirectory is used to save the information related to the population probabil-
ity density functions f(~x|Gj). “PDFs” is subdivided in directories that represent the
population groups. Each one of these directories contains TDirectory objects that
are named according to the systematic groups of the population. These groups are
not used in the fitting process of QSigEx, but are useful if one wants to compute
systematic errors on the fitted parameters. Inside these folders are contained the
marginal PDFs directories. A PDF TDirectory is basically composed of an object
derived from QSigExDis (the PDF itself) and an “Inputs” directory where are listed
the PDF coordinates names. Other objects can be written in one of the described
directory levels if, for example, correlations have to be computed between the vari-
ables. Modules 3 and if needed a module 4 add content to “PDFs” TDirectory.

8

3.4.4 “Probs” TDirectory

The “Probs” TDirectory is divided into two subdirectories: “PDFsProbs” and “Joint-
PDFsProbs”. These folders contain the marginal probability densities and the joint
probability densities respectively. Both contain TTree objects which branches are
composed of Double t values. Modules 5 and 6 contribute to the “Probs” TDirec-
tory.

3.4.5 “Fit” TDirectory

The modules 7 write their results and the parameters configuration in the “Fit”
TDirectory. The user should refer to the HTML [2] documentation for more details.

9

Bibliography
[1] Glen Cowan. Statistical Data Analysis. Oxford Science Publications,

Clarendon Press, Oxford, 1998.

[2] Pierre-Luc Drouin. QSigEx Classes and Members Reference Guide.
http://www.physics.carleton.ca/research/sno/anal/software/qsigex.html,
Carleton University, Ottawa.

[3] Dean Karlen. Using projections and correlations to approximate proba-
bility distributions. Computers in Physics, 1998.

[4] R. Brun & F. Rademakers. ROOT. http://root.cern.ch.

10

	Introduction
	Getting Started
	QSigEx and ROOT
	Main Modules

	General Interface of QSigEx
	Overview
	QSigExDirHandler: A Common Interface
	void SetDir(TDirectory* folder)
	TDirectory* GetDir()
	void LoadCardFile(const Char_t* cardfilename)
	void ClearCardBuf()
	Int_t Get()
	void CleanDir()

	The Configuration File
	The TDirectory Structure
	``Cuts'' TDirectory
	``Event Info'' TDirectory
	``PDFs'' TDirectory
	``Probs'' TDirectory
	``Fit'' TDirectory

