

What can we learn about neutrinos at SNOLAB !?

Alain Bellerive

Canada Research Chair

Carleton University

York March 2005

Outline

- Introduction & Neutrino Production in the Sun
- Solar Neutrino Problem
- Neutrino Oscillation and Matter Effects
- Results from the Sudbury Neutrino Observatory
- Constraints on Oscillation Parameters
- The Next Phase for SNO
- Future Prospects at SNOLAB
- A Proposal for Xenon Double Beta Decay Search
- Time Projection Chamber R&D
- Summary and Conclusion

Macroscopic Properties of the Sun

Mean Distance from the Earth: 1.5×10^{11} m Mass: 2×10^{30} kg Radius: 6.96×10^8 m Luminosity: 3.8×10^{26} W Neutrino flux: 6.5×10^{11} cm⁻² s⁻¹

Neutrino Production in the Sun

Solar v Flux Measurement Results

Experiment	Year	Detection Reaction	Ratio Exp/BP2000
Chlorine (127 t)	1970- 1995	$^{37}\text{Cl} + \nu_e \rightarrow \ ^{37}\text{Ar} + e^{-1}$	0.34 ± 0.03
Kamiokande (680t)	1986- 1995	$v_{x} + e^{-} \rightarrow v_{x} + e^{-}$	0.54 ± 0.08
SAGE (23 t)	1990-	$^{71}\text{Ga} + \nu_e \rightarrow ^{71}\text{Ge} + e^{-}$	0.55 ± 0.05
Gallex + GNO (12 t)	1991-	$^{71}\text{Ga} + \nu_e \rightarrow ^{71}\text{Ge} + e^{-1}$	0.57 ± 0.05
SuperK (22kt)	1996-	$v_x + e^- \rightarrow v_x + e^-$	0.451 +0.017 -0.015

Chlorine – Gallium – Water experiments have different energy threshold

III The data suggest an energy dependence III

??? What could explain such a variation **???**

Solar Neutrino Problem

- Historically the first culprit was assumed to be the method of determining the solar v flux.
- In fact, the last 30 years showed that the SSM provides and accurate description of the macroscopic properties of our Sun.
- The mass, radius, shape, luminosity, age, chemical composition, and photon spectrum of the Sun are precisely determined and used as input parameters.
- Equation of state relates pressure and density; while the radiative opacity dictates photon transport.
- Experimental fusion cross sections used to determined the nuclear reaction rates.

Test of Standard Solar Model

SSM determines the present distribution of physical variables inside the Sun (like the core temperature and density), photon spectrum, the speed of sound, , and the neutrino fluxes.

Neutrino Mixing:

 As in the quark sector, it is possible to define a neutrino mixing matrix which relates the mass and weak eigenstates

Mixing Matrix

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

$$U_{\alpha i} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\delta} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix}$$

where $c_{ii} = \cos \theta_{ii}$, and $s_{ii} = \sin \theta_{ii}$

Solar Neutrino Oscillations

- Physics:
 Δm² & sin(2θ)
- Experiment:

$$\Delta m^2 \equiv \Delta m_{12}^2$$
 and $\theta \equiv \theta_{12}$

3 Parameters !

$$\Delta m^{2} = m_{2}^{2} - m_{1}^{2}$$

Distance (L) & Energy (E)

$$\theta = Mixing angle$$

$$\begin{pmatrix} V_e \\ V_{\mu} \\ V_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ V_2 \\ V_3 \end{pmatrix}$$

The state evolves with time or distance

Neutrino Oscillations in matter

Alain Bellerive

Matter-Enhanced Neutrino Oscillations

Neutrinos produced in weak state v_{e}

- ⇒ High density of electrons in the Sun
- \Rightarrow Superposition of mass states v_{1, 2, 3} changes through the MSW resonance effect
- ⇒ Solar neutrino flux detected on Earth consists of v_{e} + $v_{u,\tau}$

Sensitivity to v oscillations

Vacuum Oscillations

Different types of \bullet experiments sensitive to different aspects of oscillation space

MSW Oscillations

For v's in matter can \bigcirc acquire an effective mass through scattering, enhancing oscillations

York March 2005

Mixing Parameters

Combination of the Chlorine, Gallium, SK, and CHOOZ restricted the mixing parameters

Pre SNO

York March 2005

Alain Bellerive

Subury Neutrino Observatory Timeline Experimental Apparatus • First Results from the D₂0 Phase Most Recent Results from the Salt Phase 🗮 Outlook to the NCD Phase

OVERAL PICTURE

SNO Timeline

- Phase 2: D_2O + Salt (NaCl)
- Phase 1a: D₂O
- Phase 3: $D_2O + {}^{3}He$ counters

Underground laboratory in Sudbury

Sudbury Neutrino Observatory

- PMT Support Structure, 17.8 m 9456 20 cm PMTs ~55% coverage within 7 m
- Acrylic Vessel, 12 m diameter -
- 1000 tonnes D_2O 1700 tonnes H_2O , Inner Shield
- **5300 tonnes H₂O, Outer Shield Urylon Liner and Radon Seal** -
- **Energy Threshold = 5.511 MeV**

Purpose of SNO

- If Solar Neutrino Problem due to v_e flavour mixing to v_{μ} and/or v_{τ} , SNO should provide direct evidence.
- SNO measures flux of v_e and flux of (v_e+v_μ+v_τ).

Neutrino detection in SNO

- PMTs detect
 Čerenkov photons
 from relativistic e⁻:
 - e⁻ from CC or ES reaction
 - γ from *n*-capture (NC reaction) usually Compton-scatters *e*⁻ (pair production less likely).

Neutrino detection in SNO

- Hit pattern from Čerenkov cone indicates physics event.
- PMT hit times and locations used to reconstruct e⁻ direction and location

 Number of PMT hits used to estimate electron energy.

SNO observables - event by event **PMT Information: Positions, Charges, Times**

Event Reconstruction Vertex, Direction, Energy, Isotropy

York March 2005

Alain Bellerive

The SNO detector observes the following interactions:

23

Neutrino Reactions in SNO

$$cc \quad v_e + d \rightarrow p + p + e^-$$

- Q = 1.445 MeV

- good measurement of ν_{e} energy spectrum

- some directional info $\propto (1 - 1/3 \cos \theta)$

- v_e only

NC
$$\nu_x + d \rightarrow p + n + \nu_x$$

- Q = 2.22 MeV

- measures total ⁸B ν flux from the Sun

- equal cross section for all ν types

ES
$$\nu_x + e^- \rightarrow \nu_x + e^-$$

- low statistics
- mainly sensitive to $\nu_e,$ some ν_μ and ν_τ
- strong directional sensitivity

Produces Cherenkov Light Cone in D₂O

n captures on deuteron ²H or ³⁵Cl or ³He

Produces Cherenkov Light Cone in D₂O

An Ultraclean Environment

 Highly sensitive to any γ above neutral current (2.2 MeV) threshold.

Three Ways to Catch Neutrons! (NC) $v_x + d \rightarrow v_x + p + n$

York March 2005

Alain Bellerive

Subury Neutrino Observatory

D₂O Results

Shape Constrained Signal Extraction Results

York March 2005

Alain Bellerive

Shape Constrained Neutrino Fluxes Signal Extraction in Φ_{CC} , Φ_{NC} , Φ_{ES} with E > 5.511 MeV $\Phi_{cc}(v_e) = 1.76^{+0.06}_{-0.05} (stat.)^{+0.09}_{-0.09} (syst.) x10^{6} cm^{-2}s^{-1}$ $\Phi_{es}(v_x) = 2.39^{+0.24}_{-0.23}$ (stat.) $^{+0.12}_{-0.12}$ (syst.) x10⁶ cm⁻²s⁻¹ $\Phi_{nc}(v_x) = 5.09^{+0.44}_{-0.43}$ (stat.) $^{+0.46}_{-0.43}$ (syst.) x10⁶ cm⁻²s⁻¹ Signal Extraction in $\Phi_{\rm e}, \Phi_{\mu\tau}$ $\Phi_{e} = 1.76^{+0.05}_{-0.05}$ (stat.) $^{+0.09}_{-0.09}$ (syst.) x10⁶ cm⁻²s⁻¹ $\Phi_{\mu\tau} = 3.41^{+0.45}_{-0.45}$ (stat.) $^{+0.48}_{-0.45}$ (syst.) x10⁶ cm⁻²s⁻¹

SNO NC in D₂O (April 2002)

~ 2/3 of initial solar v_e are observed at SNO to be $v_{\mu,\tau}$

SNO CC vs NC implies flavor change, which can then explain other experimental results.

Alain Bellerive

Progress in 2002 on the Solar **Neutrino Problem March 2002 April 2002** with SNO **Dec 2002** with KamLAND

Subury Neutrino Observatory

Salt Results

Nucl-exp / 0502021

NEW

Advantages of Salt (original idea from Carleton)

- Neutrons capturing on ³⁵Cl provide higher neutron energy above threshold.
- Higher capture efficiency
- Gamma cascade changes the angular profile.

Advantages of salt: n-detection efficiency

With salt, higher E release from ncapture and higher σ for n-capture mean much higher NC detection efficiency.

Advantages of salt: event isotropy

Isotropy variable, β_{14} , function of angles between each pair of hit PMTs (θ_{ij}) in event. (similar to *thrust* in collider physics)

β₁₄ powerful discriminating variable between NC and CC/ES events.

Calibration of detector

²⁵²Cf (neutron) and ¹⁶N (6 MeV γ) sources provide check of MC for $β_{14}$

¹⁶N triggered γ -ray source calibrates energy response

Salt analysis: data set and data reduction

Radioactive backgrounds

- Ex situ measurements show Uranium and Thorium levels lower than goals
 - ~ 1 background neutron/day
- Ex situ measurements consistent with in situ measurements
- In situ measurements more precise so used for solar neutrino analysis.

Source	Avera	ge rate	Counts in				
			data set				
Neutrons generated inside D ₂ O:							
² H photodisintegration [U	$91.3^{+30.4}_{-31.5}$						
² H photodisintegration [²⁴	'Na]		10.2 ± 2.5				
n from fission [U]	0.43	$ m n\mu g^{-1}U~y^{-1}$	0 ± 0				
2 H(α , α n) ¹ H [Th]	1.9	n $\mu \mathrm{g}^{-1}$ Th y^{-1}	0.93 ± 0.50				
2 H(α , α n) 1 H [222 Rn]	0.80	$\mathrm{n}\mu\mathrm{g}^{-1}~\mathrm{U}~\mathrm{y}^{-1}$	2.89 ± 0.47				
$^{17,18}O(\alpha,n)^{20,21}Ne$ [Th]	0.09	$n \mu g^{-1}$ Th y ⁻¹	0.03 ± 0.02				
$^{17,18}O(\alpha,n)^{20,21}Ne$ [²²² Rn]	0.20	$n \mu g^{-1} \ U \ y^{-1}$	0.72 ± 0.12				
n from atmospheric v			$15.8^{+21.3}_{-4.6}$				
²⁴ Na from muons	0.33	$n y^{-1}$	0.14 ± 0.14				
muons in SNO	11240	$n y^{-1}$	≤ 1				
muons in rock	0.14	$n y^{-1}$	0.08 ± 0.01				
$\overline{v_e}$ "ccp"	0.03	$n y^{-1}$	0.01 ± 0.01				
$\overline{v_e}$ "ccd"	1.43	$n y^{-1}$	0.6 ± 0.1				
$\overline{v_e}$ "ncd"-reactor	3.24	$n y^{-1}$	1.4 ± 0.3				
$\overline{v_e}$ "ncd"-terrestrial	1.2	$n y^{-1}$	0.5 ± 0.1				
$CNO \nu$	1.0	$n y^{-1}$	0.4 ± 0.4				
Total internal-source neutrons			$125.1^{+37.3}_{-32.0}$				
γ -rays generated uniformly i	inside I	O_2O :					
γ from fission [U]	0.04	$\gamma\mu{ m g}^{-1}{ m U}~{ m y}^{-1}$	0 ± 0				
γ from atmospheric ν			$3.2^{+4.6}_{-4.4}$				
Total internal-source γ -rays			$3.2^{+4.6}_{-4.4}$				
Decays of spallation product	ts throu	ighout D ₂ O:					
¹⁶ N following muons		16 N y ⁻¹	< 1.3				
Other spallation	1.2	$^{A}\mathrm{Z}\mathrm{y}^{-1}$	≤ 0.8				
Cherenkov events from radio	oactivit	y inside D_2O :					
$\beta\gamma$ decays (U,Th, ²⁴ Na)	$3.6^{+1.0}_{-0.9}$						
Backgrounds produced outsi	ide D_2	D:					
Externally generated neut	128.5 ± 42.4						
$\beta\gamma$ decays (U, Th) in AV, 1	< 18.5						
Instrumental contamination	<3						
Isotropic acrylic vessel ev	< 6.55						

York

40

Measurement of CC, NC, ES events

- MC PDFs compared to data; extended unbinned ML fit used to estimate free parameters in fit.
- 3 (or 4) variables used to calculate likelihood PDFs:
 - Radial position of reconstructed vertex
 - Direction of electron w.r.t. Sun, $\cos \theta_{sun}$
 - Event isotropy, β_{14} (PMT hit pattern)
 - Electron kinetic energy (PMT hits) (optional)

Free parameters in fit:

- number of NC, CC, ES signal events
- "external neutron" background events

Matter enhanced oscillations change ES and CC spectra

PDFs for signals and backgrounds

Isotropy

Radius of fitted vertex

PDFs for signals and backgrounds

York March 2005

Flux results from fits

Units for ϕ are 10⁶ cm⁻² s⁻¹

Energy spectrum
of ⁸B v's
constrained
$$\phi_{CC}^{con} = 1.72^{+0.05}_{-0.05}(\text{stat})^{+0.11}_{-0.11}(\text{syst})$$

$$\phi_{ES}^{con} = 2.34^{+0.23}_{-0.23}(\text{stat})^{+0.15}_{-0.14}(\text{syst})$$

$$\phi_{NC}^{con} = 4.81^{+0.19}_{-0.19}(\text{stat})^{+0.28}_{-0.27}(\text{syst}),$$
Energy spectrum
of ⁸B v's unconstrained
(Energy not used in fit)
$$\phi_{ES}^{uncon} = 1.68^{+0.06}_{-0.06}(\text{stat})^{+0.08}_{-0.09}(\text{syst})$$

$$\phi_{ES}^{uncon} = 2.35^{+0.22}_{-0.22}(\text{stat})^{+0.15}_{-0.15}(\text{syst})$$

$$\phi_{NC}^{uncon} = 4.94^{+0.21}_{-0.21}(\text{stat})^{+0.38}_{-0.34}(\text{syst}),$$
Standard Solar Model
(Bahcall, Pinsonneault 2004)
$$\phi_{BP04}^{on} = 5.79 \pm 1.33$$

York March 2005

Charged Current (CC=v_e) Spectrum

York March 2005

45

Charged Current (CC=v_e) Spectrum

York March 2005

Comparison to previous results and SSM

More precise salt results confirm D₂O results

Comparison to previous results and SSM

More precise salt results confirm D₂O results

48

York March 2005

York March 2005

Alain Bellerive

49 🚺

SNO: Results Phase II: neutrino oscillation parameters

Ratio of CC/NC fluxes gives $P(v_e \rightarrow v_e)$

 $P(v_e \rightarrow v_e) = 1 - \sin^2(2\theta)\sin^2(1.27\Delta m^2 L/E)$

Interpretation of salt flux results: neutrino oscillation parameters

1-D projections of oscillation parameters give marginal uncertainties on $tan^2\theta$ and Δm^2

Oscillation analysis	$\Delta m^2 (10^{-5} \text{ eV}^2)$	$\tan^2 \theta$
SNO-only	$5.0^{+6.2}_{-1.8}$	$0.45^{+0.11}_{-0.10}$
Global solar	$6.5^{+4.4}_{-2.3}$	$0.45_{-0.08}^{+0.09}$
Solar plus KamLAND	$8.0^{+0.6}_{-0.4}$	$0.45^{+0.09}_{-0.07}$

Maximal mixing (tan² θ = 1) excluded at ~ 6 σ

York March 2005

Subury Neutrino Observatory

NCD Phase

NCD Deployment

SNO NCD Phase

$$v_x + d \rightarrow p + n + v_x$$

 $n + {}^{3}\text{He} \rightarrow p + t$

- Event by event separation
- Break the correlation between NC & CC events
- Measure in separate data streams NC & CC events
- Different systematic errors than neutron capture on NaCl
- Commissioning Fall 04 (now!)

Neutral Current Detectors

Optical Calibration: LIVE !!!!!

NCD Phase - Advantage of ³He counters

	Correlation Coefficient			
	D ₂ O	Salt	³ ⊦]e	
CC,NC	-0.950	-0.521	~0	
NC,ES	-0.297	-0.08각	~0	
CC,ES	-0.208	-0.156	~ -0.2	

- Reduction in anti-correlation between NC and CC will help to reduce uncertainty in CC/NC ratio.
- Smaller uncertainty in CC/NC ratio means smaller uncertainty in tan²θ.
- Best CC spectrum from D2O with NC constrained by NCD and overall consistency with Salt

York March 2005

What SNO might tell us in the future... The Ultimate D2o + Salt + NCD Analysis !

Salt phase 254 day results provide independent measurement of ⁸B solar neutrino flux, demonstrate flavor conversion to $>7\sigma$, and improve MSW parameter measurements.

York March 2005

Goal for Final SNO $(D_2O + salt + NCD)$

Results from full 391 days of salt data <u>soon</u>!

Includes day-night and spectrum.

³He phase underway, for event-by-event NC discrimination...and even better physics!

CC/NC ratio to 7% D/N asymmetry to 3% abs. <u>uncertainty</u>

SNOLAB

EXO

A Proposal for Double Beta Decay Search

- Absolute Majorana Neutrino Mass Scale
- Why Xenon?
- Prototype at WIMP
- Time Projection Chamber R&D

Deep: 2092 m underground $\Rightarrow 85 \ \mu/m^2/y$

1

T

The Lots

1910.00

6.130

Se

There are two varieties of $\beta\beta$ decay

2v mode: a conventional 2nd order process in nuclear physics Ov mode: a hypothetical
 process can happen
 only if: • M_v ≠ 0 ^{Since helicity}
 • v = v

Several new particles can take the place of the virtual v But Ovßß decay always implies new physics

Xe is ideal for a large experiment

- No need to grow crystals
- Can be re-purified during the experiment
- •No long lived Xe isotopes to activate
- •Can be easily transferred from one detector to another if new technologies become available
- Noble gas: easy(er) to purify
- •¹³⁶Xe enrichment easier and safer:
 - noble gas (no chemistry involved)
 - centrifuge feed rate in gram/s, all mass useful
 - centrifuge efficiency ~ Δm . For Xe 4.7 amu

Background due to the Standard Model $2\nu\beta\beta$ decay

Summed electron energy in units of the kinematic endpoint (Q)

from S.R. Elliott and P. Vogel, Ann.Rev.Nucl.Part.Sci. 52 (2002) 115.

The only effective tool here is energy resolution

Energy Resolution

•For a 2.5 MeV electron the lower limit on the relative resolution from statistical fluctuations alone corresponds to FWHM energy resolution $\Delta E/E \approx 0.3\%$ [Fano limit]

•Hope to obtain an energy resolution after the full reconstruction of an event of $\Delta E/E \approx 1\%$ [competitive with Germanium detector]

Micropattern Detectors for TPC

Best energy resolution amongst gas proportional detectors with electron transmission close to 100% through the anode mesh

Electrostatic analysis looking at field uniformity

67

R&D Effort

Track reconstruction with charge dispersion on resistive anode and <u>resolution</u> study

TPC

- New Initiative at Carleton
- Time Projection Chamber
- Application for EXO
- Overlap with detector development for the ILC
- World consensus to build a new e⁺ e⁻ linear collider (LC)
- Detectors capable of precision measurements

York March 2005

Conclusion

- SNO provided direct evidence of flavor conversion of solar $\nu_{\rm e}{}'s$
- SNO (d2o+salt+ncd) will provide the ultimate measurment of the total (NC) solar v_x flux
- Real-time data do not show large energy distortion nor time-like asymmetry
- Matter Effect explains the energy dependence of solar oscillation
- Large mixing angle (LMA) solutions are favored
- Solar Neutrino Problem is now an industry for precise measurements of neutrino oscillation parameters – SNO (d2o+salt+NCD) Ultimate NC

Implications and Outlook

- Solar neutrinos demonstrate that <u>neutrinos have mass</u> and the minimum SM is incomplete
 - Unlike the quark sector where the CKM mixing angles are small, the lepton sector exhibits large mixing
 - The ν masses and mixing may play significant roles in determining structure formation in the early universe as well as supernovae dynamics and the creation of matter
- The coming decade will be exciting for neutrino physics helping delineate the *New* Standard Model that will include neutrino masses and mixing
 - Precision measurements of the leptonic mixing matrix
 - Determination of neutrino masses (e.g. EXO)
 - Investigation of lepton sector CP and CPT properties

Goals of SNOLAB

Measure and Study the Low-Energy Solar Neutrino Spectrum in Real Time

Determine the Absolute Mass Scale, Mixing Pattern, and Character of Neutrinos

Determine the Dark Matter Content of the Universe

→Ultra-Low Background→Deep and Clean

A (probably incomplete) list of the different ideas discussed by various groups

Experiment	Nucleus	Detector	Т ^о (у)	< m _v > eV
CUORE	¹³⁰ Te	.77 t of TeO ₂ bolometers (nat)	7 x 10 ²⁶	.014091
ЕХО	¹³⁶ Xe	10 t Xe TPC + Ba tagging	1 x 10 ²⁸	.013037
GENIUS	⁷⁶ Ge	1 t Ge diodes in LN	1 x 10 ²⁸	.013050
Majorana	⁷⁶ Ge	1 t Ge diodes	4 x 10 ²⁷	.021070
MOON	¹⁰⁰ Mo	34 t nat.Mo sheets/plastic sc.	1 x 10 ²⁷	.014057
DCBA	¹⁵⁰ Nd	20 kg Nd-tracking	2 x 10 ²⁵	.035055
CAMEO	¹¹⁶ Cd	1 t CdWO ₄ in liquid scintillator	> 10 ²⁶	.05324
COBRA	¹¹⁶ Cd , ¹³⁰ Te	10 kg of CdTe semiconductors	1 x 10 ²⁴	.5-2.
Candles	⁴⁸ Ca	Tons of CaF_2 in liq. scint.	1 x 10 ²⁶	.1526
GSO	¹¹⁶ Cd	2 t Gd ₂ SiO ₅ :Ce scint in liq scint	2 x 10 ²⁶	.038172
Zmass	¹³⁶ Xe	1 t of liquid Xe	3 x 10 ²⁶	.086252

Note that the sensitivity numbers are somewhat arbitrary, as they depend on the author's guesstimate of the background levels they will achieve

York March 2005
Xe offers a qualitatively new tool against background: ¹³⁶Xe → ¹³⁶Ba⁺⁺ e⁻ e⁻ final state can be identified using optical spectroscopy (M.Moe PRC44 (1991) 931)

Ba⁺ system best studied (Neuhauser, Hohenstatt, Toshek, Dehmelt 1980) Very specific signature "shelving" Single ions can be detected from a photon rate of 10⁷/s

 Important additional constraint
 Huge background reduction

Outline Scientific Program

- Low Energy Neutrinos
 Sudbury Neutrino Observatory (SNO)
 SNO++ (upgrade with liquid scintillator)
- Search for Cold Dark Matter
 > Picasso
- Investigation of Double-Beta Decay
 Majorana
 - Enriched Xenon Observatory (EXO)
- Summary

SNO++: Fill with Liquid Scintillator

Physics program: pep neutrinos

SNO++: Survival Probability

pep flux:

Uncertainty ±1.5%

Allows precision test of the Solar Standard Model & the LMA matter enhanced oscillation scenario

Real-time low energy v's experiments are the ultimate probe of the Sun

SNOLAB: The Cosmic Connections

Energy budget of Universe

Neutralino Interaction with Matter

Spin independent interaction – scalar coupling

 \Rightarrow heavy nuclei

 Require Low-E Threshold
 Require Large Target Mass with Ultra-Low Background

Neutralino Interaction with Matter

Spin dependent interaction – axial coupling λ

Small freon droplets in polymerized gel at room T° droplets overheat

>A particle hit vaporizes the droplet:

- phase transition event
- an acoustic shock wave detected with piezoelectric transducers

Isotope	Spin	Unpaired	λ ²
⁷ Li	3/2	р	0.11
¹⁹ F	1/2	ρ	0.863
²³ Na	3/2	p	0.011
²⁹ Si	1/2	n	0.084
⁷³ Ge	9/2	n	0.0026
127	5/2	р	0.0026
¹³¹ Xe	3/2	n	0.0147

Target nuclei

Remotely controled from Montréal

Improved Spin Dependent Limits from the PICASSO Dark Matter Search Experiment hep-ex/0502028

Yet, we still do not know: - the neutrino mass scale

 the choice of mass hierarchy

These *experimental* problems take a central place in the future of Particle Physics