Cosmic Dynamics: the Friedmann Equations

Born in St. Petersburg in 1888 , died in Petrograd (former St. Petersburg, then Leningrad, now St. Petersburg again) in 1925.

Cosmic Dynamics: the Friedmann Equations

To start with, we want the Friedmann equation. Our non-relativistic version was $$ \color{red}{ \frac{1}{2}mv^2 - \frac{{GMm}}{r} = } $$To find the Newtonian Friedmann equation, put
\color{red}{ M_s = \frac{{4\pi }}{3}\rho \left( t \right)\left[ {R_s \left( t \right)} \right]^3 }
and the grav. potential energy/unit mass
\color{red}{ E_{pot} = \frac{{GM}}{{R_s \left( t \right)}}}
then the radius of the sphere
\color{red}{ R_s \left( t \right) = a(t)r}
and the total energy \color{red}{U = E/m} combining these gives
\color{red}{ \left( {\frac{{\dot a}}{a}} \right)^2 = \frac{{8\pi G}}{3}\rho \left( t \right) + \frac{{2U}}{{\left( {r_s a\left( t \right)} \right)^2 }}}


Note some relations:
$$ \color{red}{ v\left( t \right) = \frac{{\partial d\left( t \right)}}{{\partial t}} = H\left( t \right)d\left( t \right) = r \frac{{\partial a\left( t \right)}}{{\partial t}} = r H\left( t \right)a\left( t \right)} $$ (since r doesn't change with time) so $$ \color{red}{ \frac{{\partial d\left( t \right)}}{{\partial t}} = H\left( t \right)d\left( t \right)} $$ so the (almost) general Friedmann equation is
\color{red}{ H\left( t \right)^2 = \left( {\frac{{\dot a}}{a}} \right)^2 = \frac{{8\pi G}}{{3c^2 }}\varepsilon \left( t \right) - \frac{{\kappa c^2 }}{{\left( {R_0 a\left( t \right)} \right)^2 }}}

A better (more fundamental) derivation, due to Berry: metric is
\color{red}{ \Delta \tau ^2 = \Delta t^2 - \frac{{a\left( t \right)^2 \Delta r^2 }}{{c^2 \left( {1 - \kappa r^2 } \right)}}}
Now use Gauss curvature formula with t=x1, r=x2;
\color{red}{ k\left( t \right) = - \frac{{\ddot a\left( t \right)}}{{a\left( t \right)}}}
Now dimensionally, we expect k(t) to depend on ρ,G,c: so put
\color{red}{ k\left( t \right) = \alpha \rho \left( t \right)G^l c^m + const}
(const is because empty space can be curved) \color{red}{ \left[ {k\left( t \right)} \right] = T^{ - 2} \Rightarrow l = 1,m = 0 } must agree with Newtonian result in the limit, so this fixes
\color{red}{ \frac{{\ddot a\left( t \right)}}{{a\left( t \right)}} = - k\left( t \right) = - \frac{{4\pi }}{3}\rho \left( t \right)G + \frac{\Lambda }{3}}
Λ is the cosmological (cosmical) constant: "Einstein's greatest blunder"! Introduced as a fudge factor in 1919 to stop the universe from collapsing

Equation of State

Also need the connection between ρ or ε and a: for matter and radiation we have argued $$ \color{red}{ \epsilon _M \sim \frac{1}{{a^3 }}:\epsilon _R \sim \frac{1}{{a^4 }}} $$

In general, if we have an expanding gas, change in energy = W.D. $$ \color{red}{ d\left( {\rho V} \right) = dE = - PdV \to \frac{d}{{dt}}\left( {\rho \frac{4}{3}\pi a^3 } \right) = - P\frac{d}{{dt}}\left( {\frac{4}{3}\pi a^3 } \right)} $$

For cold matter, P = 0, so we get back the old result. For radiation: can repeat old kinetic theory of gases derivation giving P = 1/3 εR.


In general we'll write P = wε. Then $$ \color{red}{ \frac{{d\left( {\epsilon a^3 } \right)}}{{dt}} = - w\epsilon \frac{{d\left( {a^3 } \right)}}{{dt}}} $$

Then $$ \color{red}{ \frac{{d\left( {\epsilon a^{3\left( {1 + w} \right)} } \right)}}{{dt}} = 0} $$ or ρa3(1+w) is a constant (prove it: hint first show $$ \color{red}{ \frac{{d\left( {a^{3\left( {1 + w} \right)} } \right)}}{{dt}} = \left( {1 + w} \right)a^{3w} \frac{{d\left( {a^3 } \right)}}{{dt}}} $$ THe general form of this is the "fluid equation"

\color{red}{ \dot \varepsilon + 3\frac{{\dot a}}{a}\left( {\varepsilon + P} \right) = 0}
can combine this with F eqn to give "acceleration equation"
\color{red}{ \frac{{\ddot a}}{a} = - \frac{{4\pi G}}{{3c^2 }}\left( {\varepsilon + 3P} \right)}
note that any reasonable material has \color{red}{\varepsilon + 3P > 0} so the acceleration \color{red}{\ddot a < 0}

Friedmann Equations Solutions

We have
\color{red}{ \left( {\frac{{\dot a}}{a}} \right)^2 = \frac{{8\pi G}}{{3c^2 }}\varepsilon _{} \left( t \right) - \frac{{\kappa c^2 }}{{\left( {R_0 a\left( t \right)} \right)^2 }} + \frac{\Lambda }{3}}
Easy to solve this numerically in general, but we'll solve for some special "one-component universes", mainly flat universes, \color{red}{\kappa = 0}

The empty universe

May seem silly but is approx correct for a universe with \color{red}{\Omega \ll 1,\Lambda = 0}. Like F = ma with no force!
\color{red}{ \left( {\frac{{\dot a}}{a}} \right)^2 = - \frac{{\kappa c^2 }}{{\left( {R_0 a\left( t \right)} \right)^2 }}}

Can now solve easily for flat universe: for matter (radiation)

\color{red}{ \varepsilon _m = \frac{{\varepsilon _{m,0} }}{{a^3 }},\left( {\varepsilon _r = \frac{{\varepsilon _{r,0} }}{{a^4 }}} \right)}
Generically \color{red}{\varepsilon _w = \frac{{\varepsilon _{w,0} }}{{a^{3\left( {1 + w} \right)} }}} so :$$ \color{red}{ \left( {\frac{{\dot a}}{a}} \right)^2 = \frac{8}{3}\pi G\epsilon _0 \left( {\frac{a}{{R_0 }}} \right)^n ,n = -3\left( {1 + w} \right)} $$

where n = 3 (matter) or 4 (radiation) or anything else (\color{red}{w \ne 1} )

So we want the relation between t and a or ε

\color{red}{\dot a = \sqrt {\frac{{8\pi G\varepsilon _0 }}{{3c^2 }}} a^{ - \frac{{1 + 3w}}{2}} }

The Solution is............

Matter Only:

Density

How does the density change in this model?
 ρ(t) = ρ(t₀) (R(t₀)/ R(t))³ = ρ₀ R₀³/R³

Note: we are talking about matter density here


Expansion time:

\color{red}{a\left( t \right) = \left( {\frac{t}{{t_0 }}} \right)^{2/3} } (t0 is an uninteresting constant)
Hubbles "constant" in this model
\color{red}{ H\left( {t_{} } \right) = \frac{{\dot a\left( t \right)}}{{a\left( t \right)}} = \frac{2}{{3t}}}
 width=

If we take t as the time now since the Big Bang

t =  ²/3 H-1 = 12x109 yrs

(i.e. age of universe is 2/3 of Hubble time)


Radiation Only

If we have only radiation

Inflationary Universes


Energy densities

Three energy densities: \color{red}{\varepsilon _m ,\varepsilon _r ,\varepsilon _\Lambda } give us a total density param
\color{red}{ \Omega = \Omega _m + \Omega _r + \Omega _\Lambda }
Our best bets (Benchmark Model) are
or in terms of Ω, (we'll justify all of these later).
Can use this to answer various questions: These have different scaling laws

Multi Component Solutions

We have
\color{red}{ \left( {\frac{{\dot a\left( t \right)}}{{a\left( t \right)}}} \right)^2 = \frac{{8\pi G}}{{3c^2 }}\varepsilon \left( t \right) - \frac{{\kappa c^2 }}{{R_0^2 a\left( t \right)^2 }} + \frac{\Lambda }{3}}

or
\color{red}{ \frac{{H\left( t \right)^2 }}{{H_0^{} }} = \frac{{\varepsilon \left( t \right)}}{{\varepsilon _{c,0} }} + \frac{{\left( {1 - \Omega _0 } \right)}}{{a\left( t \right)^2 }}}
(Note \color{red}{\left( {\Omega _0 - 1} \right)}: will see that the nature of solution changes drastically if this is + or -). Putting in the correct scaling laws, this gives us the general solution
\color{red}{ H_0^{} t = \int_{}^{} {\frac{{da}}{{\sqrt {\frac{{\Omega _{r,0} }}{{a^2 }} + \frac{{\Omega _{m,0} }}{a} + \Omega _{\Lambda ,0} a^2 + \left( {1 - \Omega _0 } \right)} }}} }
Not ideal: we'd like a(t), not t(a), and we can't do the general case explicitly

Matter-Curvature

SImple equation
\color{red}{ \frac{{H\left( t \right)^2 }}{{H_0^2 }} = \frac{{\Omega _0 }}{{a^3 }} + \frac{{\left( {1 - \Omega _0 } \right)}}{{a\left( t \right)^2 }}}
Note H0 > 0, so universe will
Just a restating of the non-rel model we had earlier.
Parametric solution
\color{red}{ \begin{array}{l} a\left( \theta \right) = \frac{{\Omega _0 }}{{2\left( {\Omega _0 - 1} \right)}}\left( {1 - \cos \left( \theta \right)} \right) \\ t\left( \theta \right) = \frac{1}{{2H_0 }}\frac{{\Omega _0 }}{{\left( {\Omega _0 - 1} \right)^{3/2} }}\left( {\theta - \sin \left( \theta \right)} \right) \\ \end{array}}
for Ω0 > 1: etc.

Oh I've seen fire and I've seen rain

I've seen sunny days that I thought would never end

James Taylor

Lifetime of universe in Big Crunch models is given by
\color{red}{ t_c = \frac{{\Omega _0 \pi }}{{H_0 \left( {\Omega _0 - 1} \right)^{3/2} }}}
Note for small t (small θ) these all expand at as a(t) ∼ t2/3

Matter-Lambda

Will assume that we are at critical density, so
\color{red}{ \Omega _0 = 1 = \Omega _{m,0} + \Omega _{\Lambda ,0} }
SImple equation again
\color{red}{ \frac{{H\left( t \right)^2 }}{{H_0^2 }} = \frac{{\Omega _{m,0} }}{{a^3 }} + \left( {1 - \Omega _{m,0} } \right)}
Again note importance of \color{red}{\left( {\Omega _{m,0} - 1} \right)}: will see that the nature of solution changes drastically if this is + or -).
Explicit solution possible:
\color{red}{ \begin{array}{l} a\left( t \right) = \sqrt {\frac{{\Omega _{m,0} }}{{\Omega _{m,0} - 1}}} \left( {\sin \left( {\frac{3}{2}\left( {\Omega _{m,0} - 1} \right)t} \right)} \right)^{2/3} \Omega _{m,0} > 1 \\ a\left( t \right) = \sqrt {\frac{{\Omega _{m,0} }}{{1 - \Omega _{m,0} }}} \left( {\sinh \left( {\frac{3}{2}\left( {1 - \Omega _{m,0} } \right)t} \right)} \right)^{2/3} \Omega _{m,0} < 1 \\ \end{array}}

Note we get

Matter-Curvature-Lambda

\color{red}{ \frac{{H\left( t \right)^2 }}{{H_0^2 }} = \frac{{\Omega _{m,0} }}{{a^3 }} + \frac{{\left( {1 - \Omega _{m,0} - \Omega _{\Lambda ,0} } \right)}}{{a^2 }} + \Omega _{\Lambda ,0} }
By adjusting (fiddling) parameters we can get the following generic behavioiurs
  • Big Crunch
  • Big Fade (exponentially expanding )
  • Big Fade (critical matter universe)
  • Big Bounce (contracting phase, followed by exponentially expanding phase: note this implies no Big Bang!)
  • Loitering (adjust Ωm,0 so that universe almost cruunches but then ΩΛ,0 > 0 starts winning.

Radiation + Matter

How about radiation?