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This lecture gives a brief discussion of the various transport parameter and cross section options available in
EGSnrc. While specific to EGSnrc, these considerations affect almost all Monte Carlo simulations in medical
physics.



Overview

• talk is specifically about parameter selection for EGSnrc
– similar considerations apply to many other general codes
– different terminology and or algorithms

• I will not discuss variance reduction techniques (VRTs)

– these are code specific, even within the EGSnrc system
– this would take several days

• I am assuming some knowledge of the EGSnrc system
– this is not for absolute beginners

• I will start with the most important issues first and see how far we get
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Available parameters

•AE,AP (PEGS data)
•Transport cutoff energies ECUT, PCUT
• Spin effects for elastic scattering on/off
•Bremsstrahlung cross sections BH vs NIST vs NRC
•Bound Compton scattering vs Klein-Nishina
• Rayleigh scattering on/off/custom

• Relaxations on/off
•Bremsstrahlung angular distribution
• Pair angular distribution
• Photo-electron angular distribution
• Electron impact ionization
Off/On/casnati/kolbenstvedt/gryzinski/penelope
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Available parameters (cont’d)

•Transport algorithm: EGSnrc default vs PRESTA-I

•Boundary crossing algorithm: exact vs PRESTA-I

• skin depth for bca

• estepe, ximax

• Pair production energy distribution: BH vs NRC

•Triplet production on/off

• Photon cross sections: SI/XCOM/EPDL

For details of where to find specific parameters and how to select them, see
Chapter 3 of PIRS701, The EGSnrc User’s Manual.
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Parameter selection scenarios

Two possible scenarios:

•Don’t care about CPU time, need the best possible answer

• CPU time is essential (e.g. because of repetitive calculations under varying
conditions)
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Don’t care about CPU time

•Use pegs data sets with AE=AP=1 keV, and set ECUT=PCUT=1 keV

•Use default EGSnrc settings except as noted below

•Turn on Rayleigh scattering, use custom (molecular) form factors if avail-
able

• Set bremsstrahlung cross sections to NRC

• Set bremsstrahlung angular distribution to KM

•Turn on EII (electron impact ionization)

• Set pair cross sections to NRC

• Set photon cross sections to XCOM

This will give the most accurate answer EGSnrc can produce
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CPU time is essential

•Usually the appropriate selection of AE, ECUT is the most critical choice

• In general, options related to photon interactions have a very small impact
on CPU time, unless you are running a photon-only simulation

•Using certain parameter selections is important for some energy/material
combinations but entirely irrelevant for others

• Choice depends on the desired accuracy

⇒ Need to understand the effect of each parameter!

Remember: use of appropriate VRTs is often a much more important factor!
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Understanding AE, AP

Recall: energy lost in processes below AE,AP deposited locally (restricted
stopping powers), this must make sense i.e.

Range of AE electrons ≪ geometry scale
Range of AP photons ≪ geometry scale

Second condition usually difficult to satisfy. If so, it is also sufficient that

Energy lost to sub-AP photons ≪ other energy loss

Generally, when AE,AP decrease, accuracy and CPU time increase
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Understanding AE, AP
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Understanding AE, AP
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Effect of AE,AP on step size
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Threshold for producing secondaries affects step sizes dramatically.
Step sizes do not affect EGSnrc transport but may affect other codes.

But changes in energy loss straggling can affect transport.
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What is effect of different spectra/energy loss-straggling/AE?
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What is effect of different spectra/energy loss-straggling/AE?
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Choice of AE

•AE has a major effect on energy loss-straggling
– So if calculating a spectrum, it may be important to have low AE values

•But little effect on average energy loss and in many cases has a small
effect on dose deposition

– above assumes a fixed ECUT value (more coming)

• lower AE values for a fixed ECUT take longer
– 10s of percent effect

Effect may be very small in many situations: Higher AE is OK often.
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Understanding ECUT, PCUT: energies to terminate histories
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Understanding ECUT
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How does ECUT affect the calculation?
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How do we select ECUT?
• Rule of thumb (ROT): range at ECUT should be less than 1/3 dimension
of interest.
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Example: e- energy deposition kernel
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Aside on comparing 3-D dose distributions

• it has become common to use Low et al’s gamma function to compare
two calculated dose distributions

• this is not appropriate for two MC calculations since there is no uncertainty
in the spatial component of the calculation

• there are better approaches
• let’s look again at the 20 MeV e- beam

0 2 4 6 8 10 12
depth   / cm

0

1×10
-10

2×10
-10

3×10
-10

4×10
-10

do
se

 p
er

 in
ci

de
nt

 fl
ue

nc
e 

 /G
y-

cm
2

ECUT=700 keV
ECUT=1000

20 MeV e- on water
CAX of 10x10 cm

2

AE=700 keV
range rejection on

Rogers: ICCR 2013: Transport Parameter Selection in EGSnrc 21 of 74



statdose: look at absolute differences
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As a fraction of Dmax, the differences throughout the 3-D dose distribution
are small
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statdose: a statistical approach

• are the differences statistically significant?
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statdose: a statistical approach (cont)
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Understanding ECUT, PCUT

Use ECUT = AE, PCUT = AP, unless there is a clear reason not to do so.

Examples:
•The calculation of energy spectra where low-energy component not of
interest.

•Want to force all energy that reaches certain region(s) to be deposited
locally

For electrons, a better way to terminate the history of a particle is to use
range rejection, if speed is the only purpose of ECUT > AE.

But take care.
Sometimes the final quantity sought varies less than individual components.
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An example in which things cancel
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As seen earlier, at R50, AE has a larger effect than ECUT.
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The ratio of two varying quantities may be steady
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Fig implies one could have used AE=521 keV and ECUT=611 keV but
even the more conservative 521/521 saved a great deal of time.
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Range Rejection

Terminate history of any electron with energy below ESAVE which
cannot get out of current region with an energy above local ECUT.

Approximation involved!

Possibility of brem creation by terminated electrons is ignored.

Example 1: 20 MeV e− on W
11% of brem yield is from e- with E < 5 MeV and 2% from E < 2 MeV

Example 2: 10 MeV e− on W
37% and 7% of brem yield is from e- with E <5 and <2 MeV respectively.

ESAVE of 2 MeV and 1 MeV respectively ensures <2% error.

This is overly conservative since low-energy photons absorbed in the target.
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ESAVE Variation
CPU times for 18 MeV e− linac using automatic ECUTRR (BEAM paper).

Case AE ECUT ESAVE cpu s per total to e− per γ per
(MeV) (MeV) (MeV) history file/inc e− 100 inc e− 100 inc e−

1 0.700 0.700 5.0 0.0124 0.417 9.15 32.4
3 0.700 0.700 2.0 0.0125 0.420 9.07 32.8
4 0.700 0.700 0.0 0.0249 0.421 9.03 33.0

7 0.521 0.521 5.0 0.0538 0.414 8.79 32.6
8 0.521 0.521 2.0 0.0631 0.416 8.83 32.7
9 0.521 0.521 0.0 0.300 0.421 8.94 33.1

⇒ have a very good reason for using AE=521 keV (or too many computers).

e.g.: calculating dose to very thin-walled ion chamber at phantom surface.
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Range rejection is important
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At 1 keV saves > factor 2, 10 keV 8%. More important for low ECUT since
low energy e- take time to transport but short range means rejected often.
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Photon cross sections

• options are SI/XCOM/EPDL or user supplied

– Storm and Israel as per original EGS4

–NIST’s XCOM data set (now the default)

– Evaluated Photon Data Library from Lawrence Livermore National Lab-
oratory (1997)

• EGSnrc no longer uses the photon data in the PEGS4 data set
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Bound Compton scattering

• Sampling bound Compton events ∼ 1.5 · · · 2 times slower than Klein-
Nishina

•Negligible impact on CPU time with e-transport, 1–2 times increase in
CPU time for γ-only simulations

• Exception: linac simulations with DBS can be ∼3 times slower with bound
Compton!
(special tricks on sampling cannot be used with bound Compton).

• Effect usually completely negligible for energies above a few hundred keV

Rogers: ICCR 2013: Transport Parameter Selection in EGSnrc 32 of 74



Bound Compton scattering

• Electron binding reduces the total cross section (next slide)

• Scattering is most strongly suppressed for forward angles

•Doppler broadening increases the average energy transfered to electrons
per collision ⇒ average energy per unit length transfered via Compton
scattering (mass energy transfer coefficient) is quite well reproduced with
Klein-Nishina

•Binding effects and Doppler broadening only important at low energies
where photo-electric absorption dominates

⇒Very small effect for dose calculations.

• Important for detector response function calculations, simulations related
to imaging, etc.!
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The ratio of bound Compton to Klein-Nishina
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Why is this not as important as it appears? Data provided by Elsayed Ali.
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The effects on spectrometer response functions

0.00 0.02 0.04 0.06 0.08 0.10
energy/MeV

1×10
-3

1×10
-2

1×10
-1

1×10
0

1×10
1

1×10
2

1×10
3

ct
s/

M
eV

Bound Compton
Klein-Nishina

100 keV photons on 3"x3" NaI

Binding & doppler broadening makes a big difference on the Compton edge.
But the effect of relaxation/escape of fluorescent x-rays is more dramatic

since detector resolution would already smear the peak out.
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By 1 MeV the effect is negligible
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So why waste time including binding/doppler effects?
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Verifying the accuracy of the sampling routine

•Bartol and DeWerd (Med Phys 39(2012)5635) corrected the doppler
broadening routines in MCNP5
– verified against an analytic calculation
– so used it as a check on the EGSnrc implementation
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Atomic relaxations

A

eγ k

A*

p

Creation and transport of relaxation particles from an excited atom is im-
portant if their ranges are not small compared to the geometrical scale of
the problem.

Be aware: relaxations in high-Z materials may produce a lot of particles and
so a lot of overhead.
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Atomic relaxations

Output from watch:

Photoelectric about to occur: 1 0.100

Fluorescent X-ray created: 2 0.073

Auger electron created: 3 0.009

Auger electron created: 4 0.002

Auger electron created: 5 0.002

Resulting photoelectron: 1 0.012

...

Photoelectric about to occur: 2 0.073

Coster-Kronig e- created: 3 0.002

Auger electron created: 4 0.007

Auger electron created: 5 0.002

Auger electron created: 6 0.002
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EII: Electron Impact Ionization

This is creation of electron vacancies directly by electrons (like an internal
bremsstrahlung which undergoes a photoelectric event in the same atom).

• EII “on” is essential for calculation of kilo-voltage X-ray spectra (charac-
teristic X-ray lines are underestimated with EII “off”)

•Other than for kV spectra, it rarely, if ever, makes a difference

• CPU time penalty may be not negligible (fractional increase strongly de-
pends on selected AE, AP, ECUT and PCUT)

•Turning EII on automatically turns on atomic relaxations!

•multiple options: Off/On/casnati/kolbenstvedt/gryzinski/penelope
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Electron Impact Ionization: options
Available options: Off/On/casnati/kolbenstvedt/gryzinski/penelope

Problem: which is right/more accurate?
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Electron Impact Ionization: options
It doesn’t affect the brem component of spectrum
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Electron Impact Ionization: options
Problem: which is right/more accurate?
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Electron Impact Ionization: options
Problem: which is right/more accurate?
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The main difference is decay of the L-shell.
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New option re low-energy fluorescence

Previously EGSnrc used K & L shell individual binding energies but averaged
values for M & L.

Shell energies (in keV) used previously in EGSnrc for Tungsten
K L1 L2 L3 < M > < N >

69.5 12.1 11.5 10.2 2.27 0.301

< Mk >=

∑
νKMj

EMj∑
νj

where νKMj
is probability of an Mj to K transition

But: If used L−Mj probabilities, then < M >= 1.88 keV not 2.27 keV.
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Effects of using shell averages
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New option: use of the EADL relaxation dataset
Uses LLNL Evaluated Atomic Data Library (1991)
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EADL option: (now default)
REPLACE {$EADL RELAX} WITH {.true.} in egsnrc.macros
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Bremsstrahlung cross sections

• there are three differential cross section options

–Bethe-Heitler cross section as used in EGS4
–NIST database = Coulomb corrected Bethe-Heitler >∼50 MeV.

–NIST database for nuclear brem but with new electron brem modelled
using Tessier and Kawrakow, Nucl. Instr. Meth. B 266 (2008)625-634.

•There are significant differences at low energies between NIST and Bethe-
Heitler (although radiative stopping powers are forced to be the same).

• Sampling from the NIST or NRC database is faster at low energies but
slower at high energies.

⇒Don’t use the NIST or NRC option for energies above 100 MeV

⇒Use of NRC option is recommended for energies below 1 or 2 MeV.
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Brem cross sections: NIST vs Bethe-Heitler
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Brem cross sections: NIST vs Bethe-Heitler vs NRC
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Bremsstrahlung angular distribution

• Sampling from the leading term of the angular distribution (option simple)
is 2-3 times faster than using Eq. 2BS from Koch and Motz (option KM).

• In most cases, this translates into very modest (if not negligible) increase
of overall simulation time.

• Experience show that using simple is accurate enough for e.g. in phantom
dose calculations for RTP or correction factor calculations

•The KM option is recommended for e.g. linac simulations using BEAM-
nrc. Ali’s work demonstrated several cases where it appears to be impor-
tant/more accurate.

•Note: when using DBS this translates into a factor of up to ∼6 penalty
in CPU time!
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Spin effects

• In electron transport, sampling single scattering and multiple scattering
angles from the distributions that take into account spin effects is

– ∼ 2 times slower for high-Z materials

– ∼ 1.3 times slower for low-Z materials
This translates into ∼30-50% (high-Z) or ∼10-30% (low-Z) increase in
overall simulation time.

•Use of the spin option will ALWAYS have an effect on the calculated
result! (if electron transport matters)

⇒You must have some very strong arguments to turn the spin off.
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Spin effects: example
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Spin effects: example

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
depth /cm

0

10

20

30

40

50

60

70

80

90

100

re
la

tiv
e 

do
se

6.0 MeV, spin
6.1 MeV, no spin

broad parallel beam, water phantom

When modelling electron beams, one matches R50 ⇒ hard to see a problem.
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Spin effects on R50 for low-Z materials
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Spin effects on R50 for high-Z materials
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Electron-step (transport) algorithm

•The default EGSnrc algorithm needs ∼ 1.7 times longer per step compared
to PRESTA ( transport algorithm = 1)(recall 2 substeps/step).

• It is by an order of magnitude more accurate than PRESTA

⇒ In an infinite geometry (where step sizes are not modified due to bound-
aries, ...), using EGSnrc default will be

– ∼ 1.5 times slower than using PRESTA with the same step size
–BUT: much faster to achieve the same accuracy since it can use much
larger step sizes (no need for 1% ESTEPE).

• In a geometry with many boundaries, CPU time is more strongly influ-
enced by boundary crossing algorithm than by transport algorithm.
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Boundary crossing algorithm

is the most crucial parameter if there are many boundaries in the geometry!

•Using exact boundary crossing is absolutely essential for high accuracy
simulations (e.g. ion chamber response)

• It is perhaps not necessary for high-energy calculations (say, > 100 MeV)

• In the intermediate and low-energy range the error introduced due to
PRESTA-I’s BCA is strongly dependent on the situation

• For a typical RTP type calculation 3 times more CPU time is needed
compared to transport setting corresponding to EGS4/PRESTA.
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Boundary Crossing Algorithm

-electron may not take any step > t⊥, the perpendicular distance to the
closest boundary

-to prevent transport in another medium

PRESTA-I
Within ‘skindepth for bca’(in mfp) of a boundary (tmin), turn off lateral

correlation algorithm and transport to boundary
=> multiple scatter event at boundary

‘skindepth for bca’ value is large.

EXACT
-EGSnrc default is to switch to single scattering at ‘skindepth for bca = 3’

-there is no scatter at boundary
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PRESTA-I BCA vs EXACT BCA

EXACT BCA is much slower for DOSXYZnrc (factor of 3) and somewhat
slower for a photon accelerator (30%) and much slower for an electron

accelerator (factor of 2).

Give same answers in most cases, but not all.

Problems occur for small scoring regions laterally or when using
CHAMBER for central axis depth-doses.
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6 MV photons: CHAMBER phantom: CAX r=0.14 cm
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BCA Defaults in BEAMnrc code system

Default until 2007: PRESTA-I BCA for BEAMnrc and DOSXYZnrc

Now BEAMnrc default is EXACT
–30% slow down for photon accelerators
–factor of 2 slow down for electron accelerators

Reset to PRESTA-I unless you are scoring small region depth-dose with
CHAMBER CM

DOSXYZnrc default is PRESTA-I since factor of 3 slow down
unacceptable

Must use EXACT for small voxels without lateral CPE.
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Narrow electron beam
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Narrow photon beam
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⇒ Don’t make compromises if you want to use EGSnrc as a benchmark
against (allegedly) less accurate algorithms!
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Step sizes
Using EGSnrc default electron-step algorithm (PRESTA-II) and BCA (EX-
ACT)

• estepe, ximax and skin depth for bca controls on step size are NOT
needed

• by default they are set automatically for maximum accuracy.

• If you find step size dependencies, please let us know!

For default EGSnrc (see next slide)

•At low energies the ximax restriction dominates
– restricts the maximum scattering in a step so theory accurate

•At high energies the estepe restriction (=0.25) is more important

– restricting maximum energy loss per step so certain approximations hold
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Step sizes
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Actual step size used is affected by AE, AP (distance to next discrete
interactions) and by geometry.
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Step size effects on energy deposition kernels
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Timing EGSnrc vs Geant4, authors used 1% ESTEPE for EGSnrc and
AE=ECUT=512 keV for a ‘fair comparison’ (needed to get right answer
with Geant4). EGSnrc gets right answer with longer steps and higher AE.
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NRC pair cross sections and triplet production

• Relatively new option, not much experience

• CPU time penalty is negligible ( pair nrc is even more efficient than BH
for energies below ∼10 MeV)

•Default values left to pair a la BH and triplet “off” for now for the sake
of compatibility

•Turning triplet production on has a small effect in the build-up region of
mega-voltage photon beams

•Using triplet production on makes individual particle histories to be cor-
related due to the use of a Markov chain technique for sampling

•NRC pair differential cross sections seem to have no effect in all cases
studied so far.
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Photo-electron angular distribution

• Photo-electric absorption is important only at low energies

• Elastic electron scattering at low energies is very strong, the angular
distribution of photo-electrons rapidly becomes uniform due to MS

⇒ In most cases turning on photo-electron angular deflections does not make
any difference

On the other side the increase in CPU time due to iphter = 1 is negligible
⇒ could be used even if not necessary.
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Rayleigh scattering

•May become important for detailed studies only at low energies (say, below
1 MeV for high-Z materials, below 100-200 keV in low-Z materials)

•Note: by default, EGSnrc uses independent atom approximation to cal-
culate form factors for molecules ⇒ not good enough for detailed inves-
tigations of imaging devices
– there is an option to read in molecular form factors if you want.

• CPU cost negligible (unless running calculation without e- transport)

Recommendation:
Only use Rayleigh scattering when using bound Compton scattering
• there is no such a thing as photon elastic scattering of free electrons
•K-N is more accurate without Rayleigh than with.
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Pair angular sampling

•Using the fixed angle approximation (inherited from EGS4) is perhaps
never a good idea

•The default selection (leading term of the angular distribution) is most
likely good enough for any application. CPU cost compared to fixed angle:
negligible

•The more sophisticated distribution from Koch and Motz is derived from
an extreme relativistic approximation. It is probably better at high ener-
gies (say, above 50 MeV), its outcome at intermediate energies is unclear.

•Have never encountered a situation where the selection of the pair angular
sampling scheme made a significant difference on CPU time
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Conclusions

• parameter selection is important for efficiency considerations with EGSnrc

• the default settings in most cases give accurate results

• still some research needed on electron impact ionization options
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